• Title, Summary, Keyword: killer cells

Search Result 268, Processing Time 0.038 seconds

Synergistic Effect of Natural Killer Cells and Bee Venom on Inhibition of NCI-H157 Cell Growth

  • Sung, Hee Jin;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.1
    • /
    • pp.47-56
    • /
    • 2016
  • Objectives : This study examined the effects of Bee venom on apoptosis in NCI-H157 human lung cancer cells and for promoting the apoptosis effects of Natural killer cell. Methods : Bee venom and Natural killer-92 cells were cultured either separately from or together with NCI-H157 cells for 24 hours. To figure out whether Bee venom enhances the cytotoxic effect of Natural Killer-92 cells, a cell viability assay was conducted. To observe the changes in Death receptors, apoptotic regulatory proteins and Nuclear $Factor-{\kappa}B$, western blot analysis was conducted. To observe the effect of Bee venom through an extrinsic mechanism, a transfection assay was conducted. Results : 1. Natural killer-92 cells and Bee venom significantly inhibited the growth of NCI-H157 cells and co-culture had more inhibitory effect than the separate culture. 2. Expressions of Fas, DR3, DR6, Bax, caspase-3, caspase-8, cleaved caspase-3, cleaved caspase-8 were increased, and expressions of Bcl-2 and cIAP were decreased. More efficacy was observed in co-culture than in separate culture. 3. Nuclear $Factor-{\kappa}B$ activation was clearly decreased. And co-culture showed much less activation than separate culture. 4. As a result of treatment for DR-siRNA, the reduced cell viability of NCI-H157 cells and the activity of Nuclear $Factor-{\kappa}B$ were increased. With this, it can be seen that Bee venom and Natural killer-92 cells have an effect on the cancer cells through the extrinsic mechanism. Conclusion : Bee venom is effective in inhibiting the growth of human lung cancer cells. Furthermore Bee venom effectively enhances the functions of Natural killer cells.

Tim-3 Expression by Peripheral Natural Killer Cells and Natural Killer T Cells Increases in Patients with Lung Cancer - Reduction after Surgical Resection

  • Xu, Li-Yun;Chen, Dong-Dong;He, Jian-Ying;Lu, Chang-Chang;Liu, Xiao-Guang;Le, Han-Bo;Wang, Chao-Ye;Zhang, Yong-Kui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9945-9948
    • /
    • 2014
  • Background: The purpose of this study was to investigate Tim-3 expression on peripheral CD3-CD56+ natural killer (NK) cells and CD3+CD56+ natural killer T (NKT) cells in lung cancer patients. Materials and Methods: We analyzed Tim-3+CD3-CD56+ cells, Tim-3+CD3-$CD56^{dim}$ cells, Tim-3+CD3-$CD56^{bright}$ cells, and Tim-3+CD3+CD56+ cells in fresh peripheral blood from 79 lung cancer cases preoperatively and 53 healthy controls by flow cytometry. Postoperative blood samples were also analyzed from 21 members of the lung cancer patient cohort. Results: It was showed that expression of Tim-3 was significantly increased on CD3-CD56+ cells, CD3-$CD56^{dim}$ cells and CD3+CD56+ cells in lung cancer patients as compared to healthy controls (p=0.03, p=0.03 and p=0.04, respectively). When analyzing Tim-3 expression with cancer progression, results revealed more elevated Tim-3 expression in CD3-CD56+ cells, CD3-$CD56^{dim}$ cells and CD3+CD56+ cells in cases with advanced stages (III/IV) than those with stage I and II (p=0.02, p=0.04 and p=0.01, respectively). In addition, Tim-3 expression was significantly reduced on after surgical resection of the primary tumor (p<0.01). Conclusions: Tim-3 expression in natural killer cells from fresh peripheral blood may provide a useful indicator of disease progression of lung cancer. Furthermore, it was indicated that Tim-3 might be as a therapeutic target.

Isolation of the killer yeasts and its characteristics (Killer 효모의 분리 및 특성)

  • 정기택;방광웅;정순국;송형익;김재근
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.415-421
    • /
    • 1989
  • Ten strains out of about 1,000 yeast strains isolated from byproducts of alcoholic industries, milk products, fruits, greens, food-related industries and soils of nature, revealed the killer activities. Two strains which have excellent killer activities among them were isolated and identified with Saccharomyces cerevisiae B 15-1 and Hansenula anomala Y 33 by investigation of the morphological, cultural and physiological properties. The optimal conditions on these strains for the production of killer toxin were investigated. The strain B 15-1 showed the highest killer toxin activities when it was cultured up to the log phase of 48 hr in YPD medium (pH 4.7) at $25^{\circ}C$. On the other hand, the strain Y33 revealed the highest activities when it was cultured up to the stationary phase of 60 hr in YPD medium (pH 4.0) at $20^{\circ}C$. The sensitive strain Kyokai 7 was found to be killed entirely by the killer toxin produced from the wild killer yeast B 15-1 when B 15-1 was cocultured with the same cell concentration ($10^{6}$ cells/ml) of Kyokai 7 after cultivation of 36 hr, and with large concentration ($9\times 10^{7}$ cells/ml) after 48 hr.

  • PDF

Inhibition of Human Pancreatic Tumor Growth by Cytokine-Induced Killer Cells in Nude Mouse Xenograft Model

  • Kim, Ji Sung;Park, Yun Soo;Kim, Ju Young;Kim, Yong Guk;Kim, Yeon Jin;Lee, Hong Kyung;Kim, Hyung Sook;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.247-252
    • /
    • 2012
  • Pancreatic cancer is the fourth commonest cause of cancer-related deaths in the world. However, no adequate therapy for pancreatic cancer has yet been found. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against the human pancreatic cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 for 14 days. The resulting populations of CIK cells comprised 94% $CD3^+$, 4% $CD3^-CD56^+$, 41% $CD3^+CD56^+$, 11% $CD4^+$, and 73% $CD8^+$. This heterogeneous cell population was called cytokine-induced killer (CIK) cells. At an effector-target cell ratio of 100 : 1, CIK cells destroyed 51% of AsPC-1 human pancreatic cancer cells, as measured by the $^{51}Cr$-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 42% and 70% of AsPC-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for pancreatic cancer patients.

Improved Anti-Cancer Effect of Curcumin on Breast Cancer Cells by Increasing the Activity of Natural Killer Cells

  • Lee, Hwan Hee;Cho, Hyosun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.874-882
    • /
    • 2018
  • Curcumin is known to possess various biological functions, including anti-inflammatory, anti-oxidative, and anti-cancer activities. Natural killer (NK) cells are large lymphocytes that directly kill cancer cells. However, many aggressive cancers, including breast cancer, were reported to escape the successful killing of NK cells in a tumor microenvironment. In this study, we investigated the anti-cancer effect of curcumin in coculture of human breast carcinoma MDA-MB-231 and NK (NK-92) cells. We found that curcumin had an immune-stimulatory effect on NK-92 by increasing the surface expression of the $CD16^+$ and $CD56^{dim}$ population of NK-92. We confirmed that the cytotoxic effect of NK-92 on MDA-MB-231 was significantly enhanced in the presence of curcumin, which was highly associated with the activation of Stat4 and Stat5 proteins in NK-92. Finally, this improved anticancer effect of curcumin was correlated with decreased expression of pErk and PI3K in MDA-MB-231.

The Natural Killer Cell Response to HCV Infection

  • Ahlenstiel, Golo
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.168-176
    • /
    • 2013
  • In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-${\gamma}$ responses. Furthermore, some data suggests certain chronically activated subsets that are $NKp46^{high}$ may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.

Impact of IL-2 and IL-2R SNPs on Proliferation and Tumor-killing Activity of Lymphokine-Activated Killer Cells from Healthy Chinese Blood Donors

  • Li, Yan;Meng, Fan-Dong;Tian, Xin;Sui, Cheng-Guang;Liu, Yun-Peng;Jiang, You-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7965-7970
    • /
    • 2014
  • One of the goals of tumor immunotherapy is to generate immune cells with potent anti-tumor activity through in vitro techniques using peripheral blood collected from patients. However, cancer patients generally have poor immunological function. Thus using patient T cells, which have reduced in vitro proliferative capabilities and less tumor cell killing activity to generate lymphokine-activated killer (LAK) cells, fails to achieve optimal clinical efficacy. Interleukin-2 (IL-2) is a potent activating cytokine for both T cells and natural killer cells. Thus, this study aimed to identify optimal donors for allogeneic LAK cell immunotherapy based on single nucleotide polymorphisms (SNP) in the IL-2 and IL-2R genes. IL-2 and IL-2R SNPs were analyzed using HRM-PCR. LAK cells were derived from peripheral blood mononuclear cells by culturing with IL-2. The frequency and tumor-killing activity of LAK cells in each group were analyzed by flow cytometry and tumor cell killing assays, respectively. Regarding polymorphisms at IL-2-330 (rs2069762) T/G, LAK cells from GG donors had significantly greater proliferation, tumor-killing activity, and IFN-${\gamma}$ production than LAK cells from TT donors (P<0.05). Regarding polymorphisms at IL-2R rs2104286 A/G, LAK cell proliferation and tumor cell killing were significantly greater in LAK cells from AA donors than GG donors (P<0.05). These data suggest that either IL-2-330(rs2069762)T/G GG donors or IL-2R rs2104286 A/G AA donors are excellent candidates for allogeneic LAK cell immunotherapy.

The Emerging Role of Natural Killer Cells in Innate and Adaptive Immunity

  • Kim, Eun-Mi;Ko, Chang-Bo;Myung, Pyung-Keun;Cho, Daeho;Choi, Inpyo;Kang, Hyung-Sik
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.205-215
    • /
    • 2004
  • In the early host defense system, effector function of natural killer (NK) cells results in natural killing against target cells such as microbe-infected, malignant, and certain allogenic cells without prior stimulation. NK cell cytotoxicity is selectively regulated by homeostatic prevalence between a repertoire of both activating and inhibitory receptors, and the discrimination of untransformed cells is achieved by recognition of major histocompatibility complex (MHC) class I alleles through inhibitory signals. Although it is well known that the bipotential T/NK progenitors are derived from the common precusor, functional mechanisms in terms of the development of NK cells remain to be further investigated. NK cells are mainly involved in innate immunity, but recent studies have been reported that they also play a critical role in adaptive immune responses through interaction with dendritic cells (DC). This interaction will provide effector functions and development of NK cells, and elucidation of its precise mechanism may lead to therapeutic strategies for effective treatment of several immune diseases.

Natural killer T cell and pathophysiology of asthma

  • Jang, Gwang Cheon
    • Korean Journal of Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.136-145
    • /
    • 2010
  • Natural killer T (NKT) cell is a special type of T lymphocytes that has both receptor of natural killer (NK) cell (NK1.1, CD161c) and T cell (TCR) and express a conserved or invariant T cell receptor called $V{\alpha}14J{\alpha}18$ in mice or Va24 in humans. Invariant NKT (iNKT) cell recognizes lipid antigen presented by CD1d molecules. Marine-sponge-derived glycolipid, ${\alpha}-galactosylceremide$ (${\alpha}-GalCer$), binds CD1d at the cell surface of antigen-presenting cells and is presented to iNKT cells. Within hours, iNKT cells become activated and start to secrete Interleukin-4 and $interferon-{\gamma}$. NKT cell prevents autoimmune diseases, such as type 1 diabetes, experimental allergic encephalomyelitis, systemic lupus erythematous, inflammatory colitis, and Graves' thyroiditis, by activation with ${\alpha}-GalCer$. In addition, NKT cell is associated with infectious diseases by mycobacteria, leshmania, and virus. Moreover NKT cell is associated with asthma, especially CD4+ iNKT cells. In this review, I will discuss the characteristics of NKT cell and the association with inflammatory diseases, especially asthma.

AN IMMUNOHISTOCHEMICAL STUDY ON THE CHANGES OF LYMPHOCYTE SUBPOPULATIONS AND NK CELLS ACCORDING TO THE SEVERITIES OF THE PERIODONTAL DISEASE (치주질환 심도에 따른 조직내 림프구 및 NK 세포의 변화에 관한 면역조직학적 연구)

  • Choi, Ho-Keun;Kwon, Young-Hyunk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.300-314
    • /
    • 1993
  • Periodontal disease research has been focused on understanding the immunopathologic mechanisms which may operate in the development and maintenance of peiodontal inflammatory changes. Immunologic and inflammatory responses may relate to the etiology and pathogenesis of periodontal disease. In order to research immunopathology of periodontal disease, previous investigators have spent much time on the distribution of lymphocyte subpopulations and NK cells but they have spent less time on the changes of those cells to the periodontal disease severity. The purpose of study was performed to investigate the changes of the distribution of T lymphocytes, B lymphocytes, T lymphocyte subsets, and Natural Killer cells in the gingival epithelium and connective tissue of the periodontal disease with the various clinical parameters including Gingival Index, Sulcular Bleeding Index, and pocket depth. Gingival tissues were obtained from 25 patients with different severity of periodontal disease. Serial cryostat sections displaying a cross section of gingiva were labelled with monoclonal antibody for pan T cells, T cytotoxic/suppressor cells, T helper/inducer cells, pan B cells, and NK cells were develped using an avidin-biotin-peroxidase system. Lymphocyte populations were enumerated in repeatable fields from gingival section. 1. T cells were more increased at grade 1 and 3 than at grade 0 of gingival index (p<0.05). Helper T cells and NK cells were significantly increased at grade 1, 2, 3 than at grade 0(p<0.05). 2. T cells were more decreased at grade 3 and 4 than at grade 1 of sulcular bleeding index (p<0.01, p<0.05). Especially, Natural Killer cells were significantly increased at grade 1, 2, 3, 4 than at grade 0 (p<0.05, p<0.001). 3. The ratios of helper T/suppressor T cells were more decreased at grade 4 than at grade 0 and at grade 4 than at grade 2 of sulcular bleeding index (p<0.05, p<0.05). 4. Helper T cells were significantly decreased at grade II and III than at grade I, however the Natural Killer cells showed a increasing tendency with the increase of the pocket depth, there were no significant differences between each grade of pocket depth. 5. The ratios of helper T/suppressor T cells were tended to be decreased with the increase of the pocket depth, there were no significant differences between each grades of pocket depth. There was a very weak change in the distribution of T lymphocytes, B lymphocytes, T lymphocyte subsets, and Natural Killer cells in the gingival epithelium and connective tissue of the periodontal lesion with the various clinical parameters including gingial index, sulcular bleeding index, and pocket depth. But, the number of T lymphocytes and Natural Killer cells were significantly changed in gingival index and sulcular bleeding index.

  • PDF