• Title, Summary, Keyword: insulin sensitivity

Search Result 167, Processing Time 0.052 seconds

An association of urinary sodium-potassium ratio with insulin resistance among Korean adults

  • Park, Yeong Mi;Kwock, Chang Keun;Park, Seyeon;Eicher-Miller, Heather A.;Yang, Yoon Jung
    • Nutrition Research and Practice
    • /
    • v.12 no.5
    • /
    • pp.443-448
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: This study was conducted to investigate the effects of sodium-potassium ratio on insulin resistance and sensitivity in Korean adults. SUBJECTS/METHODS: Subjects were 3,722 adults (1,632 men and 2,090 women) aged 40-69 years participating in the Korean genome and epidemiology study_Ansan and Ansung study. Insulin resistance was assessed using homeostasis model assessment of insulin resistance (HoMA-IR) and fasting insulin, and insulin sensitivity was assessed by using the quantitative insulin sensitivity check index (QUICKI). The 24-h urinary sodium and potassium excretion were estimated from spot urinary samples using the Tanaka formula. The generalized linear model was applied to determine the association between urinary sodium-potassium ratio and insulin resistance. RESULTS: HoMA-IR (P-value = 0.029, P-trend = 0.008) and fasting insulin (P-value = 0.017, P-trend = 0.005) levels were positively associated with 24-h estimated urinary sodium-potassium ratio in the multivariable model. QUICKI was inversely associated with 24-h estimated urinary sodium-potassium ratio in all models (P-value = 0.0002, P-trend < 0.0001 in the multivariate model). CONCLUSION: The present study suggests that high sodium-potassium ratio is related to high insulin resistance and low insulin sensitivity. Decreasing sodium intake and increasing potassium intake are important for maintaining insulin sensitivity. Further studies are needed to confirm these findings in longitudinal studies.

Effects of Non-protein Energy Intake on the Concentrations of Plasma Metabolites and Insulin, and Tissue Responsiveness and Sensitivity to Insulin in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki;Shiga, Akio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1010-1018
    • /
    • 2006
  • A glucose clamp technique was used to investigate the effects of non-protein energy intake on tissue responsiveness and sensitivity to insulin for glucose metabolism in intact adults male goats. Three goats were fed diets at 1.0, 1.5 and 2.0 times of ME for maintenance, each for 21 d. Crude protein intake was 1.5 times of maintenance requirement in each treatment. Tissue responsiveness and sensitivity to insulin were evaluated using a hyperinsulinemic euglycemic clamp technique with four levels of insulin infusion, beginning at 13 h after feeding. Concentrations of plasma metabolites and insulin were also measured at 3, 6 and 13 h after feeding, for evaluating effects of non-protein energy intake on the metabolic status of the animals. Increasing non-protein energy intake prevented an increase in plasma NEFA concentration at 13 h after feeding (p = 0.03). Plasma urea-nitrogen and total amino-nitrogen concentrations decreased (p<0.01) and increased (p = 0.03), respectively, with increasing non-protein energy intake across time relating to feeding. Plasma insulin concentration was unaffected (p = 0.43) by non-protein energy intake regardless of time relating to feeding. In the glucose clamp experiment, increasing non-protein energy intake decreased numerically (p = 0.12) the plasma insulin concentration at half-maximal glucose infusion rate (insulin sensitivity), but did not affect (p = 0.60) maximal glucose infusion rate (tissue responsiveness to insulin). The present results suggest that an increase in non-protein energy intake may enhance insulin sensitivity for glucose metabolism, unlike responsiveness to insulin, in adult male goats. The possible enhancement in insulin sensitivity may play a role in establishing anabolic status in the body, when excess energy is supplied to the body.

Moderate diet-induced weight loss is associated with improved insulin sensitivity in middle-aged healthy obese Korean women

  • Lee, Hye-Ok;Yim, Jung-Eun;Kim, Young-Seol;Choue, Ryowon
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.469-475
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: The goal of the present study was to investigate the effects of moderate caloric restriction on ${\beta}$-cell function and insulin sensitivity in middle-aged obese Korean women. SUBJECTS/METHODS: Fifty-seven obese pre-menopausal Korean women participated in a 12-week calorie restriction program. Data on total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), and fasting serum levels of glucose, insulin, C-peptide, blood pressure, leptin and anthropometrics were collected. A dietary intake assessment was based on three days of food recording. Additionally, ${\beta}$-cell function [homeostasis model assessment of ${\beta}$-cell (HOMA-${\beta}$), insulinogenic index (ISI), C-peptide:glucose ratio, and area under curve insulin/glucose ($AUC_{ins/glu}$)] and insulin sensitivity [homeostasis model assessment for insulin resistance (HOMA-IR), Quantitative insulin-sensitivity check index (QUICKI) and Matsuda index (MI)] were recorded. RESULTS: When calories were reduced by an average of 422 kcal/day for 12 weeks, BMI (-2.7%), body fat mass (-10.2%), and waist circumference (-5%) all decreased significantly (P < 0.05). After calorie restriction, weight, body fat percentage, hip circumference, BP, TC, HDL-C, LDL-C, plasma glucose at fasting, insulin at fasting and 120 min, $AUC_{glu}$ and the insulin area under the curve all decreased significantly (all P < 0.05), while insulin sensitivity (HOMA-IR, QUICKI and Matsuda index) measured by OGTT improved significantly (P < 0.01). CONCLUSIONS: Moderate weight loss due to caloric restriction with reduction in insulin resistance improves glucose tolerance and insulin sensitivity in middle-aged obese women and thereby may help prevent the development of type 2 diabetes mellitus.

Effect of the changes in the Ratio of Dietary Fat to carbohydrate and Energy Restriction on Insulin Sensitivity in Rats (식이중 지방 및 탄수화물의 비율과 열량제한이 흰쥐의 인슐린 민감도에 미치는 영향)

  • 선영실
    • Journal of Nutrition and Health
    • /
    • v.22 no.4
    • /
    • pp.266-274
    • /
    • 1989
  • The current study was undertaken to determine the effects of the ratios of dietary fat to carbohydrate and energy restriction on insulin sensitivity in the growing rats. Male rats weighting 80-90g were fed experimental diets for two weeks. Rats were killed and epiddymal adipose tissue were removed and sliced. Explants of adipose tissues were incubated for 2 hours in KRB(Krebs-Ringer bicarbonate) buffer containing various concentrations of human insulin and [U-14C]glucose. Insulin sensitivity was determined as glucose conversion to total lipids (lipogenesis) during 2 hr incubation. Exp't I : Effects of Ratios of Fat to Carbohydrate on Insulin Sensitivity. Eighteen male rats were fed 3 diets for 2 weeks. Diet 1 was low fat-high carbohydrate (4% soybean oil and 66.5% cornstarch) ; diet 2, medium fat-medium sarbohydrate(12% soybean oil and 58.5% cornstarch) ; diet 3, high fat-low carbohydrate (20% soybean oil and 50.5% cornstarch). Insulin sensitivity was higher in the order of LF-HC, MF-HC and HF-LC diet groups (p<0.05), i.e, lipogenesis was higher at all insuline concentration in the explants from rats fed LF-HC diet. However, thers was no significant difference in body weight gain and epididymal adipose tissue weight among treatments. Exp't II ; Effects of Energy Restriction on Insulin Sensitivity. Twelve rats were grouped into ad libitum feeding and restricted feeding(70% of ad libitum). The experimental diet was medium fat-medium carbohydrat diet as used in the Exp't I. Restricted feeding group tended to show higher insulin sensitivity compared to ad libitum group. However, there was no statistical difference between two groups. As expected, body weight gain and epididymal adipose tissue were higher in the ad libitum group. In summary, the resutls of the current study showed that the epididymal adipose tissue taken from the rats fed low fat-high carbohydrate diet showed higher insulin sensitivity compared to those fed high fat-low carbohydrate, and that resticted feeding tended to elevate insulin sensitivity in these tissues.

  • PDF

Effects of Dietary Modification on Plasma Glucose and Insulin Sensitivity in Streptozotocin-induced Diabetic Rats

  • Choi, Hyun-Ju
    • Journal of Nutrition and Health
    • /
    • v.30 no.9
    • /
    • pp.1035-1044
    • /
    • 1997
  • There is substantial evidence that insulin sensitivity can be enhanced through appropriate dietary management . In this study, insulin sensitivity was evaluated using and insulin suppression test. Male Sprague-Dawley rats, were caused to be in a diabetic condition by the injection of streptozotocin, and divided into four groups. They were fed one of the following diets for 2 weeks : (group 1) a high-carbohydrate(CHO) low-fat low-fiber diet, (group 2) a high CHO low-fat and high-fiber diet, (group 3) a low-CHO high-fat and low-fiber diet, and (group 4) a low-CHO low-fat diet groups (as comparison between group 1 and group 2 shows). In the low-CHO high-fat diet groups, dietary fiber tended to decrease plasma glucose levels at the end of the experiment, but not significantly (as comparison between group 3 and group 4 shows). The average steady state plasma glucose level in rats on the group 3 diet was the highest among all four groups(p<0.05), indicating the poorest insulin sensitivity . However, high fiber increased insulin sensitivity in rats on the low-CHO high-fat diets(as shows by a comparison between group 3 and group 4). On the other hand , the high-CHO low-fat enhanced insulin sensitivity in rats on the low fiber diet(group 1 and group 3). The degree of enhancement of insulin sensitivity depends on the combination of CHO, fat , and fiber in the diet. In conclusion, this study demonstrates that a low-CHO high-fat low -fiber diet may be deleterious to diabetic rats. In view of insulin sensitivity enhancement , dietary fiber level is irrelevant, as long as the diet has a high-CHO and low-fat level.

  • PDF

Dietary Protein Restriction Alters Lipid Metabolism and Insulin Sensitivity in Rats

  • Kang, W.;Lee, M.S.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1274-1281
    • /
    • 2011
  • Dietary protein restriction affects lipid metabolism in rats. This study was performed to determine the effect of a low protein diet on hepatic lipid metabolism and insulin sensitivity in growing male rats. Growing rats were fed either a control 20% protein diet or an 8% low protein diet. Feeding a low protein diet for four weeks from 8 weeks of age induced a fatty liver. Expression of acetyl-CoA carboxylase, a key lipogenic enzyme, was increased in rats fed a low protein diet. Feeding a low protein diet decreased very low density lipoprotein (VLDL) secretion without statistical significance. Feeding a low protein diet down-regulated protein expression of microsomal triglyceride transfer protein, an important enzyme of VLDL secretion. Feeding a low protein diet increased serum adiponectin levels. We performed glucose tolerance test (GTT) and insulin tolerance test (ITT). Both GTT and ITT were increased in protein-restricted growing rats. Our results demonstrate that dietary protein restriction increases insulin sensitivity and that this could be due to low-protein diet-mediated metabolic adaptation. In addition, increased adiponectin levels may influences insulin sensitivity. In conclusion, dietary protein restriction induces a fatty liver. Both increased lipogenesis and decreased VLDL secretion has contributed to this metabolic changes. In addition, insulin resistance was not associated with fatty liver induced by protein restriction.

Gynura procumbens extract improves insulin sensitivity and suppresses hepatic gluconeogenesis in C57BL/KsJ-db/db mice

  • Choi, Sung-In;Lee, Hyun-Ah;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.507-515
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: This study was designed to investigate whether Gynura procumbens extract (GPE) can improve insulin sensitivity and suppress hepatic glucose production in an animal model of type 2 diabetes. MATERIALS/METHODS: C57BL/Ksj-db/db mice were divided into 3 groups, a regular diet (control), GPE, and rosiglitazone groups (0.005 g/100 g diet) and fed for 6 weeks. RESULTS: Mice supplemented with GPE showed significantly lower blood levels of glucose and glycosylated hemoglobin than diabetic control mice. Glucose and insulin tolerance test also showed the positive effect of GPE on increasing insulin sensitivity. The homeostatic index of insulin resistance was significantly lower in mice supplemented with GPE than in the diabetic control mice. In the skeletal muscle, the expression of phosphorylated AMP-activated protein kinase, pAkt substrate of 160 kDa, and PM-glucose transporter type 4 increased in mice supplemented with GPE when compared to that of the diabetic control mice. GPE also decreased the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. CONCLUSIONS: These findings demonstrate that GPE might improve insulin sensitivity and inhibit gluconeogenesis in the liver.

Pear pomace ethanol extract improves insulin resistance through enhancement of insulin signaling pathway without lipid accumulation

  • You, Mi-Kyoung;Kim, Hwa-Jin;Rhyu, Jin;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.198-205
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The anti-diabetic activity of pear through inhibition of ${\alpha}-glucosidase$ has been demonstrated. However, little has been reported about the effect of pear on insulin signaling pathway in obesity. The aims of this study are to establish pear pomace 50% ethanol extract (PPE)-induced improvement of insulin sensitivity and characterize its action mechanism in 3T3-L1 cells and high-fat diet (HFD)-fed C57BL/6 mice. MATERIALS/METHODS: Lipid accumulation, monocyte chemoattractant protein-1 (MCP-1) secretion and glucose uptake were measure in 3T3-L1 cells. Mice were fed HFD (60% kcal from fat) and orally ingested PPE once daily for 8 weeks and body weight, homeostasis model assessment of insulin resistance (HOMA-IR), and serum lipids were measured. The expression of proteins involved in insulin signaling pathway was evaluated by western blot assay in 3T3-L1 cells and adipose tissue of mice. RESULTS: In 3T3-L1 cells, without affecting cell viability and lipid accumulation, PPE inhibited MCP-1 secretion, improved glucose uptake, and increased protein expression of phosphorylated insulin receptor substrate 1 [p-IRS-1, ($Tyr^{632})$)], p-Akt, and glucose transporter type 4 (GLUT4). Additionally, in HFD-fed mice, PPE reduced body weight, HOMA-IR, and serum lipids including triglyceride and LDL-cholesterol. Furthermore, in adipose tissue, PPE up-regulated GLUT4 expression and expression ratio of p-IRS-1 ($Tyr^{632})/IRS$, whereas, down-regulated p-IRS-1 ($Ser^{307})/IRS$. CONCLUSIONS: Our results collectively show that PPE improves glucose uptake in 3T3-L1 cells and insulin sensitivity in mice fed a HFD through stimulation of the insulin signaling pathway. Furthermore, PPE-induced improvement of insulin sensitivity was not accompanied with lipid accumulation.

Effects of Dietary Starch and Sucrose on Tissue Responsiveness and Sensitivity to Insulin in Goats Fed a High-concentrate Diet

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.385-392
    • /
    • 2007
  • A glucose clamp technique was used to compare dietary starch (ST), starch plus sucrose (ST+SU) and sucrose (SU) with regard to the effect on tissue responsiveness and sensitivity to insulin in intact adult male goats. The goats were fed diets containing 1.2 times of ME and CP for maintenance requirements twice daily for 21 d. Of the energy intake, 30% was offered with ST, ST+SU or SU for the respective diets, and 70% as alfalfa hay, ground corn and ground soybean meal at the respective weight ratio of 1, 1, and 0.3 for all diets. Tissue responsiveness and sensitivity to insulin were evaluated using a hyperinsulinemic euglycemic clamp technique with four levels of insulin infusion beyond 13 h after feeding. The concentrations of plasma metabolites and insulin were also determined at 3, 6 and 13 h after feeding to evaluate the effects of different carbohydrates on metabolic states in the body. Plasma glucose concentration was higher (p = 0.01) for SU diet than for ST and ST+SU diets. Increasing SU intake decreased (p<0.01) plasma acetate concentration across the time. At 3 h but not 6 and 13 h after feeding, high lactate (p = 0.01), and non-significant high propionate (p = 0.14) and low urea nitrogen (p = 0.19) concentrations were observed in plasma on SU compared with ST and ST+SU diets. Plasma insulin concentration was not different (p = 0.44) between ST and SU fed animals. In the glucose clamp experiment, considering the effects on the maximal glucose infusion rate (tissue responsiveness to insulin, p = 0.54) and the plasma insulin concentration at half-maximal glucose infusion rate (insulin sensitivity, p = 0.54), SU was not different from ST. It is concluded that SU may not be greatly different from ST with regard to the effect on tissue responsiveness and sensitivity to insulin in adult goats when fed twice daily as part of a high-concentrate diet. The possible greater effects of SU on plasma metabolites concentrations at 3 h than at 6 and 13 h after feeding suggest that a lack of persistency of SU effects during the postfeeding period may be associated with the poor response to SU in insulin action.

Pharmacodynamic evaluation of hypoglycemic effect of Damtab in healthy adult male volunteers

  • Sahu, Pratap Kumar;Pillai, KK;Saha, Nilanjan;Sharma, Manju;Najmi, AK
    • Oriental Pharmacy and Experimental Medicine
    • /
    • v.7 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • The objectives of the study were (1) To evaluate the safety and tolerability of Damtab. (2) To characterize hypoglycemic effect of Damtab, if any. (3) To evaluate insulin sensitivity effect of Damtab, if any. Hypoglycemic effect of Damtab (700 mg and 1,400 mg) were examined. Gliclazide (80 mg) was used as an active control. Placebo was used as control. Breakfast was given, half an hour before dosing whereas lunch, snacks and dinner were given at 6, 10 and 14 h post dose. An oral glucose tolerance test was conducted to calculate the insulin sensitivity index from the values of glucose and insulin during oral glucose tolerance test. Both giclazide 80 mg and Damtab 1,400 mg significantly lowered plasma glucose level up to 6 h. Insulin sensitivity index of Damtab (1,400 mg) was found to be similar to that of placebo. A significant increase in insulin level at 1 h post dose of Damtab (1,400 mg) was observed. Damtab 700 mg shows placebo like effect whereas Damtab 1,400 mg possesses hypoglycemic effect.