• Title, Summary, Keyword: instrumentation

Search Result 3,243, Processing Time 0.056 seconds

Self-Tuning PID Controller Based on PLC

  • Phonphithak, A.;Pannil, P.;Suesut, T.;Masuchun, R.;Julsereewong, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.272-276
    • /
    • 2004
  • The conventional PID (Proportional-Integral-Derivative) control technique is widely used for the process control in many industries since it is simple in structure and provides the good response. Nowadays, this control technique has been developed on the Programmable Logic Controller (PLC) to use for the process control loop. However, using this technique is difficult when tuning the PID parameters ($K_p$, $T_i$ and $T_d$) to achieve the best response. Moreover, trial-and-error procedure along with the operator experiences are required to obtain the best results when tuning the PID controller parameters. This paper proposes the self-tuning PID controller based on PLC for the process control in the industries. The proposed self-tuning PID controller uses the PLC-based PID structures to control the process production. The proposed PID tuning utilizes the PLC to synthesize and analyze controller parameter as well as to tune for appropriate parameters using Dahlin method and extrapolation. Experimental results using a self-tuning PID controller to control temperature of the oven show that the controller developed is capable of controlling the process very effectively and provides a good response.

  • PDF

Computer-Interfacing Development for Propeller-Anemometer

  • Saad, Nor Hayati;Janin, Zuriati;Piah, Ruhaidawati Mohd Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.515-519
    • /
    • 2004
  • A Propeller-Anemometer is an instrument used specifically, to measure the wind speed. The accurate measurement of the wind speed is vitally important such required by any weather stations. In this research, the measurand of the instrumentation was the rotational speed of the propeller and the instrumentation result or output data was wind velocity. The speed measured was recorded digitally in the computer by using specific software. A specific sensor used to measure a variable by converting information of the variable (rotational speed of the propeller) into a dependent signal such as electrical signal in form of voltage. The development of Propeller-Anemometer involved few sets of instrumentation process and equipment. It included three major parts, mechanical, electronics and computer. The main instrumentation processes were physical and signal interfacing, signal conditioning, logic interfacing, data transmission to computer and processing the data. Generally, this paper presents the overall concept and design of Propeller-Anemometer Instrumentation. However, an emphasis was mainly in designing and building the interfacing system, hardware and software. Basically, for the first phase of the development, this project designed and built the RS232 terminal using Peripheral Interface Controller (PIC), PIC16F873. The hardware can be interfaced to computer or other compatible devices. This routine converted input voltage from the circuit to speed (velocity) and transmitted them afterwards to the target device by using the RS232 transmission protocol. This implementation implied a computer display as visual interface. For the purpose of this paper, RS232 data transmission was carried out using a Microsoft Visual Basic software routine.

  • PDF

A Study of Design Single Phase Boost Converter Controller for Compensated Load Current and Duty (부하전류와 듀티를 보상하는 단상 PFC 부스트 컨버터 제어기 설계)

  • Lim, Jae-Uk;Lee, Seung-Tae;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • This paper proposes a new DC link voltage controller for a single-phase power factor correction (PFC) boost converter. The load current of the PFC boost converter affects the capacitor current, whereas the load current changes the output voltage. However, previous works that compensate output current have failed to consider the relationship between load current and duty. Thus, they also fail to maintain a constant output voltage if the load fluctuates under the conditions of a non-rated input voltage. By considering the duty in the load current compensation, the proposed method improves the load transient response regardless of the input voltage. To demonstrate its effectiveness, the proposed method is compared with other control methods by conducting PSM simulations and experiments under a rapidly changing load.

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Loss Analysis and Air-Cooled Design for a Cascaded Electrical Source Transmitter

  • Xue, Kai-Chang;Wang, Shuang;Lin, Jun;Li, Gang;Zhou, Feng-Dao
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.530-543
    • /
    • 2015
  • Air-cooling method is adopted on the basis of the requirements for the thermal stability and convenient field use of an electrical source transmitter. The power losses of the transmitter are determined after calculating the losses of the alternating current (AC)-direct current (DC) power supply, the constant-current circuit, and the output circuit. According to the analysis of the characteristics of a heat sink with striped fins and a fan, the engineering calculation expression of the Nusselt number and the design process for air-cooled dissipation are proposed. Experimental results verify that the error between calculated and measured values of the transmitter losses is 12.2%, which meets the error design requirements of less than 25%. Steady-state average temperature rise of the heat sink of the AC-DC power supply is $22^{\circ}C$, which meets the design requirements of a temperature rise between $20^{\circ}C$ and $40^{\circ}C$. The transmitter has favorable thermal stability with 40 kW output power.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.

High Power RF Commissioning for S-band Electron LINAC

  • Park, Hyung Dal;Lee, Byeong-No;Song, Ki Baek;Cha, Sung Su;Kim, Yujong;Lee, Byung Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.111.2-111.2
    • /
    • 2013
  • 고주파 전자가속기는 고출력 RF 시스템으로 구동된다. 이러한 고주파 전자가속기에서 고출력 RF 시스템은 종종 고출력 방전으로 인해 가속관에 손상을 입힐 수 있기 때문에 조심스럽게 RF conditioning을 진행 하여야 한다. 일반적으로 RF conditioning은 아주 긴 시간을 필요로 하고, RF 출력을 서서히 높여가며 진행할 필요성이 있다. 한국원자력연구원에서는 9 MeV와 6 MeV 에너지를 출력하기 위해서는 가속관으로 RF 입력을 약 5.5 MW까지 RF conditioning을 진행하여야 한다. 따라서, 본 연구에서는 Klystron 최대 출력이 약 5.5 MW로 한국원자력연구원에서 개발된 S-band (2,856 MHz) RF 전자가속관에 RF conditioning을 진행 하였다. 가속관의 진공을 약 1.0e-7을 유지하면서 반복률을 10 Hz부터 180 Hz로 증가시켰고, RF 입력 파워는 약 6 MW까지 RF conditioning을 진행 하였다. 그 결과 짧은 시간에 RF commissioning을 진행할 수 있었다.

  • PDF

Initial Study of a Wire Mesh Tomography Sensor for Liquid/Gas Component Investigation

  • Rahiman, M.H.F.;Siow, L.T.;Rahim, R.A.;Zakaria, Z.;Ang, Vernoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2205-2210
    • /
    • 2015
  • Experimental studies have been carried out to study the principle operation of the conductive type wire-mesh tomography sensor and analyse the wire-mesh tomography sensor for the liquid/gas two-phase flow interface and void fraction distribution in a process column. The measurement of the two-phase flows in the process column is based on the cross-sectional local instantaneous conductivity. The sensor consists of two planes of parallel electrode wires with 16 electrodes each and was placed orthogonally with each plane. The sensor electrode wires were made of tinned copper wire with an outer diameter of 0.91 mm which stretched over the sensor fixture. Therefore, this result in the mesh grid size with 5.53×5.53mm2. The wire-mesh sensor was tested in a horizontal liquid/gas two-phase flows process column with nominal diameter of 95.6 mm and the sampling frequency of 5882.3529 Hz. The tomogram results show that the wire-mesh tomography provides significant results to represent the void fraction distribution in the process column and estimation error was found in the liquid/gas interface level

A Study on Wireless Communication using Lighting Within Exhibition Halls (전시장 내 조명을 이용한 무선통신에 관한 연구)

  • Son, Jin-Hwan;Kim, Seong-Min;Sung, Kyu-Youl;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.480-483
    • /
    • 2016
  • Due to recent rapid development of wireless communication technologies, many people or enjoying the benefits of technological innovation in everyday life. Therefore wireless communications for various purposes and daily life is being required and research about where risk medication adequate for each purpose is being continued. Therefore the study conducted research on effective wireless communication within exhibition halls and suggested a wireless communication method using lighting within exhibition halls to effectively deliver the information of the artwork that the visitors desire.

  • PDF

Torque Ripple Reduction Algorithm of PMSM at High Speed Operation (PMSM 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone;Nam, Myung-Joon;Lim, Byung-Kuk;Jin, Jong-Hag;Lee, Jong-Hoon
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.118-119
    • /
    • 2014
  • 왜곡된 역기전력을 갖는 매입형 영구자석동기전동기를 정현파 전류로 제어할 경우 역기전력의 왜곡으로 인해 발생하는 토크리플은 전동기의 진동, 소음, 효율 저하의 요인이 된다. 저속운전의 경우 토크리플을 상쇄할 수 있는 고조파전류를 인가하여 전류제어에 의해 토크리플을 줄일 수 있다. 그러나 고조파 전류제어에 의한 토크리플 저감은 전류제어기의 대역폭에 의해 전류제어 특성이 좌우되므로 고조파 보상전류의 주파수가 높은 경우 적절한 보상이 되지 않는다. 본 논문에서는 전동기의 고속운전 시 고조파 전류에 해당되는 고조파 전압을 보상함으로써 역기전력에 의한 토크리플을 저감한다. 제안된 토크리플 저감 알고리즘은 시뮬레이션을 통해 검증한다.

  • PDF