• Title, Summary, Keyword: inflammatory mediators

Search Result 686, Processing Time 0.045 seconds

Study on the Anti-inflammatory Effects of the Remedy Prescripted with Lonicerae Flos and Scutellariae Radix in U937 cells (금은화(金銀花)와 황금(黃芩)이 배오(配伍)된 처방제(處方劑)의 항염증(抗炎症) 효과(效果) 연구(硏究))

  • Lee, Yong-Suk;Jang, Seon-Il
    • Herbal Formula Science
    • /
    • v.18 no.1
    • /
    • pp.121-132
    • /
    • 2010
  • Inflammatory reaction is characterized by over-production of inflammatory mediators due to an up-regulation of inflammatory pathways, which produce pro-inflammatory mediators, such as interleukin-1beta (IL-$1{\beta}$), IL-6, tumour necrosis factor alpha (TNF-$\alpha$), prostaglantin $E_2$ ($PGE_2$), and nitric oxide (NO) in U937 cells. We investigate the anti-inflammatory effects of water extracts from Lonicerae Flos and Scutellariae Radix in lipopolysaccharide (LPS)-stimulated U937 cells. Each extract suppressed the production of inflammatory mediators (NO, IL-$1{\beta}$, TNF-$\alpha$, and $PGE_2$) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS- stimulated U937 cells in a dose-dependent manner. These suppressive effects were synergistically increased by their combination. Their combination extract also inhibited NF-${\kappa}B$-DNA complex of NF-${\kappa}B$ binding activity and translocation of NF-${\kappa}B$ from cytosol to nucleus. These results suggest that the combination of water-extractable components of Lonicerae Flos and Scutellariae Radix may be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.

Anti-Inflammatory Effects of Ji-Pae-San Water Extract (지패산(芷貝散)의 항염증(抗炎症) 효능(效能)에 대한 연구(硏究))

  • Lee, Sang-Hyun;Park, Chan-Ki
    • Herbal Formula Science
    • /
    • v.16 no.1
    • /
    • pp.79-94
    • /
    • 2008
  • Although inflammatory mediators such as nitric oxide(NO) and pro-inflammatory cytokines are involved in host defense mechanism, these overproduction contributes to the pathogenesis of several diseases such as otitis media, hearing loss, periodontitis, bacterial sepsis, rheumatoid arthritis, chronic inflammation and autoimmune diseases. We investigate the anti-inflammatory effects of water extract from Ji-Pae-San(JPSWE) fomulated with Angelica dahurica plus Fritillaria Verticillata, Angelica dahurica(ADWE), and Fritillaria Verticillata(FUVE) in vitro and in vivo. Each extract inhibited the production of inflammatory mediators(NO, $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, and prostaglandin $E_2$) and the expression of inducible NO synthase(iNOS) and cyclooxygenase-2(COX-2) in lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophages in a dose-dependent manner. These inhibitory effects were synergistically increased by their combination. JPSWE also inhibited $TNF-{\alpha}$, $IL-1{\beta}$, IL-6. and $PGE_2$ production as well as COX activity in LPS-stimulated mice. Moreover, JPSWE significantly suppressed death by LPS-septic shock in mice(survival rate: 100%). These results suggest that Ji-Pae-San may be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.

  • PDF

Effect of Corticosterone Pretreatment on the Production of LPS-Induced Inflammatory Mediators in RAW 264.7 Cells (RAW 264.7 Cell에서 리포폴리사카라이드로 유도된 염증성 매개인자들의 생산에 있어서 Corticosterone 전처리 효과)

  • Chae, Byeong Suk
    • YAKHAK HOEJI
    • /
    • v.59 no.5
    • /
    • pp.215-221
    • /
    • 2015
  • Glucocorticoids are known to have anti-inflammatory effect. To investigate whether corticosterone pretreatment enhances or not lipopolysaccharide (LPS)-induced production of inflammatory mediators, RAW 264.7 cells were pretreated with various concentrations of corticosterone for 24 h and then cultured without corticosterone in the presence or absence of LPS. Our results demonstrated that LPS remarkably increased production of TNF-${\alpha}$, IL-6, IL-$1{\beta}$, vascular endothelial growth factor (VEGF), and NO (nitric oxide). Corticosterone pretreatment significantly attenuated LPS-induced production of TNF-${\alpha}$, IL-$1{\beta}$, and VEGF, while significantly enhanced IL-6 and NO. These findings suggest that corticosterone pretreatment may contribute to LPS-induced inflammatory responses in macrophages via pro- and anti-inflammatory imbalance of inflammatory mediators.

Effects of a Tetramethoxyhydroxyflavone on the Expression of Inflammatory Mediators in LPS-Treated Human Synovial Fibroblast and Macrophage Cells

  • Yoon, Do-Young;Cho, Min-Chul;Kim, Jung-Hee;Kim, Eun-Jin;Kang, Jeong-Woo;Seo, Eun-Hee;Shim, Jung-Hyun;Kim, Soo-Hyun;Lee, Hee-Gu;Oh, Goo-Taeg;Hong, Jin-Tae;Park, Joo-Won;Kim, Jong-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.686-694
    • /
    • 2008
  • The inhibitory effects of 5,6,3',5'-tetramethoxy 7,4'-hydroxyflavone (labeled as p7F) were elucidated on the productions of proinflammatory cytokines as well as inflammatory mediators in human synovial fibroblasts and macrophage cells. p7F inhibited IL-1${\beta}$ or TNF-${\alpha}$ induced expressions of inflammatory mediators (ICAM-1, COX-2, and iNOS). p7F also inhibited LPS-induced productions of nitric oxide and prostaglandin $E_2$ in RAW 264.7 cells. In order to investigate whether p7F would inhibit IL-1 signaling, p7F was added to the D10S Th2 cell line (which is responsive to only IL-1${\beta}$ and thus proliferates), revealing that p7F inhibited IL-1${\beta}$-induced proliferation of D10S Th2 cells in a dose-response manner. A flow cytometric analysis revealed that p7F reduced the intracellular level of free radical oxygen species in RAW 264.7 cells treated with hydrogen peroxide. p7F inhibited IkB degradation and NF-${\kappa}$B activation in macrophage cells treated with LPS, supporting that p7F could inhibit signaling mediated via toll-like receptor. Taken together, p7F has inhibitory effects on LPS-induced productions of inflammatory mediators on human synovial fibroblasts and macrophage cells and thus has the potential to be an anti-inflammatory agent for inhibiting inflammatory responses.

YJI-7 Suppresses ROS Production and Expression of Inflammatory Mediators via Modulation of p38MAPK and JNK Signaling in RAW 264.7 Macrophages

  • Oh, Hye Jin;Magar, Til Bahadur Thapa;Pun, Nirmala Tilija;Lee, Yunji;Kim, Eun Hye;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.191-200
    • /
    • 2018
  • Chalcone, (2E)-1,3-Diphenylprop-2-en-1-one, and its synthetic derivatives are known to possess anti-oxidative and anti-inflammatory properties. In the present study, we prepared a novel synthetic chalcone compound, (E)-1-(4-hydroxyphenyl)-3-(2-(trifluoromethoxy)phenyl)prop-2-en-1-one name (YJI-7), and investigated its inhibitory effects on endotoxin-stimulated production of reactive oxygen species (ROS) and expression of inflammatory mediators in macrophages. We demonstrated that treatment of RAW 264.7 macrophages with YJI-7 significantly suppressed lipopolysaccharide (LPS)-stimulated ROS production. We also found that YJI-7 substantially decreased NADPH oxidase activity stimulated by LPS, indicating that YJI-7 regulates ROS production via modulation of NADPH oxidase in macrophages. Furthermore, YJI-7 strongly inhibited the expression of a number of inflammatory mediators in a gene-selective manner, suggesting that YJI-7 possesses potent anti-inflammatory properties, as well as anti-oxidative activity. In continuing experiments to investigate the mechanisms that could underlie such biological effects, we revealed that YJI-7 suppressed phosphorylation of p38MAPK and JNK stimulated by LPS, whereas no significant effect on ERK was observed. Furthermore, LPS-stimulated production of ROS, activation of NADPH oxidase and expression of inflammatory mediators were markedly suppressed by treatment with selective inhibitor of p38MAPK (SB203580) and JNK (SP600125). Taken together, these results demonstrated that YJI-7, a novel synthetic chalcone derivative, suppressed LPS-stimulated ROS production via modulation of NADPH oxidase and diminished expression of inflammatory mediators, at least in part, via down-regulation of p38MAPK and JNK signaling in macrophages.

The Chloroform Fraction of Carpinus tschonoskii Leaves Inhibits the Production of Inflammatory Mediators in HaCaT Keratinocytes and RAW264.7 Macrophages

  • Kang, Gyeoung-Jin;Kang, Na-Jin;Han, Sang-Chul;Koo, Dong-Hwan;Kang, Hee-Kyoung;Yoo, Byoung-Sam;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.255-262
    • /
    • 2012
  • Inflammation is the immune system's response to infection and injury-related disorders, and is related to pro-inflammatory factors (NO, $PGE_2$, cytokines, etc.) produced by inflammatory cells. Atopic dermatitis (AD) is a representative inflammatory skin disease that is characterized by increasing serum levels of inflammatory chemokines, including macrophage-derived chemokine (MDC). Carpinus tschonoskii is a member of the genus Carpinus. We investigated the anti-inflammatory activity of C. tschonoskii by studying the effects of various solvent fractions prepared from its leaves on inflammatory mediators in HaCaT and RAW264.7 cells. We found that the chloroform fraction of C. tschonoskii inhibited MDC at both the protein and mRNA levels in HaCaT cells, acting via the inhibition of STAT1 in the IFN-${\gamma}$ signaling pathway. In addition, the chloroform fraction significantly suppressed the expression of inflammatory factors induced by lipopolysaccharide stimulation, except COX-2 and TNF-${\alpha}$. These results suggest that the chloroform fraction of C. tschonoskii leaves may include a component with potential anti-inflammatory activity.

Anti-inflammatory Effect of Mangosteen (Garcinia mangostana L.) Peel Extract and its Compounds in LPS-induced RAW264.7 Cells

  • Widowati, Wahyu;Darsono, Lusiana;Suherman, Jo;Fauziah, Nurul;Maesaroh, Maesaroh;Erawijantari, Pande Putu
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.147-153
    • /
    • 2016
  • Inflammation plays an important role in host defense against external stimuli such as infection by pathogen, endotoxin or chemical exposure by the production of the inflammatory mediators that produced by macrophage. Anti-inflammatory factor is important to treat the dangers of chronic inflammation associated with chronic disease. This research aims to analyze the anti-inflammatory effects of Garcinia mangostana L. peel extract (GMPE), ${\alpha}$-mangostin, and ${\gamma}$-mangostin in LPS-induced murine macrophage cell line (RAW 264.7) by inhibiting the production of inflammatory mediators. The cytotoxic assay of G. mangostana L. extract, ${\alpha}$-mangostin, and ${\gamma}$-mangostin were performed by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to determine the safe and non-toxic concentration in RAW 264.7 for the further assay. The concentration of inflammatory mediators (COX-2, IL-6, and IL-$1{\beta}$) were measured by the ELISA-based assay and NO by the nitrate/nitrite colorimetric assay in treated LPS-induced RAW 264.7 cells. The inhibitory activity was determined by the reducing concentration of inflammatory mediators in treated LPS-induced RAW 264.7 over the untreated cells. This research revealed that GMPE, ${\alpha}$-mangostin, and ${\gamma}$-mangostin possess the anti-inflammatory effect by reducing COX-2, IL-6, IL-$1{\beta}$, and NO production in LPS-induces RAW 264.7 cells.

Study on the Anti-inflammatory Effects of the Remedy Prescripted with Lonicera japonica and Scutellaria baicalensis Radix in U937 cells (金銀花와 黃芩이 配伍된 處方劑의 抗炎症 效果 硏究)

  • Lee, Yong-Suk;Jung, Myung;Lim, Kyu-Sang;Yun, Yong-Gab
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.3
    • /
    • pp.1-13
    • /
    • 2015
  • Objective : This study investigated the inflammatory reaction is characterized by over production of inflammatory mediators due to an up-regulation of inflammatory pathways.Methods : We investigated the anti-inflammatory effects of water extracts fromLonicera japonicaandScutellaria baicalensisin lipopolysaccharide (LPS)-stimulated U937 cells. Each extract suppressed the production of inflammatory mediators (NO, IL-1${\beta}$, TNF-${\beta}$, and PGE2) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS- stimulated U937 cells in a dose-dependent manner.Results : These suggest that the suppression effects were synergistically increased by their combination. Their combination extract also inhibited NF-${\kappa}B$-DNA complex of NF-${\kappa}B$ binding activity and translocation of NF-${\kappa}B$ from cytosol to nucleus.Conclusions : Our study suggest that the combination of water-extractable components ofL. japonicaandS. baicalensismay be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats

  • Son, In Suk;Lee, Jeong Soon;Lee, Ju Yeon;Kwon, Chong Suk
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.2
    • /
    • pp.82-88
    • /
    • 2014
  • Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators.