• Title, Summary, Keyword: hydrolysate, peptide

Search Result 124, Processing Time 0.045 seconds

Peptide Inhibitor for Human Immunodeficiency Virus Type 1 (HIV-1) Protease from a Thermolysin Hydrolysate of Oyster Proteins

  • Lee, Tae-Gee
    • Fisheries and aquatic sciences
    • /
    • v.13 no.1
    • /
    • pp.84-87
    • /
    • 2010
  • A peptide that inhibits HIV-1 protease was isolated from a hydrolysate of oyster (Crassostrea gigas) proteins digested with thermolysin. The peptide was using membrane filtration, gel permeation chromatography, ion exchange chromatography, and reverse-phase high performance liquid chromatography. Amino acid sequence of the peptide was determined to be Val-Phe-Glu-Leu. Chemically synthesized Val-Phe-Glu-Leu showed an $IC_{50}$ value of 106 ${\mu}M$.

Isolation of antioxidant peptide from sandfish (Arctoscopus japonicus) roe hydrolysate

  • Jang, Hye Lim;Shin, Seung Ryeul;Yoon, Kyung Young
    • Korean Journal of Food Preservation
    • /
    • v.24 no.4
    • /
    • pp.542-549
    • /
    • 2017
  • In this study, a peptide exhibiting antioxidant activity was isolated from sandfish (Arctoscopus japonicus) roe hydrolysate (SRH) in order to evaluate their practical uses as materials for manufacturing functional foods. The A. japonicus roe protein was hydrolyzed using Collupulin MG, and isolation of antioxidant peptide was performed using ultrafiltration (UF), prep-HPLC, and RP-HPLC. The SRH with a molecular weight below 3 kDa constituted about 38% of the whole hydrolysate, and the fraction with a molecular weight below 3 kDa showed significantly greater antioxidant activity compared to the original SRH and other fractions. The isolation fold of the antioxidant peptide isolated from SRH throughout the four-step procedure was 7.11-fold, and protein yield was 14.8%. The DPPH radical scavenging activity of isolated antioxidant peptide was above 90% at a concentration of 1.0 mg/mL, which was similar to that of the Trolox at a concentration of 0.1 mg/mL. These results suggested that the antioxidant peptide derived from A. japonicus roe could be a useful additive for producing functional foods and protein supplements. However, it is necessary to perform further study the structural characteristics of this antioxidant peptide isolated from A. japonicus roe.

Separation and Purification of Angiotensin-I Converting Enzyme Inhibitory Peptides from Layer Hydrolysate (김 가수분해물로부터 Angiotensin-I Converting Enzyme저해 Peptide의 분리$\cdot$정제)

  • LEE Heon-Ok;KIM Dong-Soo;DO Jeong-Ryong;KWAN Dae-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.164-172
    • /
    • 2001
  • The angiotensin-I converting enzyme (ACE) inhibitors from laver hydrolysate was isolated. Among the 13 kinds of proteases, Maxazyme NNP was most effective for preparing the high ACE inhibitory compound. In extraction conditions of ACE inhibitory peptide from laver hydrolysate, ACE inhibitory activity of hydrolysate treated with diethylether for decolorization and that of $70\%$ ethanol soluble fraction among the different ethanol concentrations were higher than other preparations. Low molecular fraction less than 3,000 dalton of layer hydrolysate separated by ultrafiltration had the highest ACE inhibitory activity, for further separation of ACE inhibitory peptide from laver hydrolysate, gel filtration chromatography (Sephadex G-25), reverse-phase HPLC (ODS & Vydac C-18) and gel permeation chromatography (Superdex Peptide HR) were performed. The molecular mass of the ACE inhibitory peptide fractions of gel permeation chromatography determined by electrospray-mass spectrometer were 413.48 (S1O2V2V1P),346.86 (S1O2V2V2P) and 320.32 (S2O6V3V1P) dalton and their amino acid sequence were Val-Gln-Gly-Asn, Thr-Glu-Thr and Phe-Arg, respectively.

  • PDF

The Effect of the Addition of Encapsulated Collagen Hydrolysate on Some Quality Characteristics of Sucuk

  • Palamutoglu, Recep;Saricoban, Cemalettin
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.807-818
    • /
    • 2016
  • The effect of addition commercial fish collagen hydrolysate and encapsulated fish collagen hydrolysate on the quality characteristics of sucuk (a traditional Turkish dry-fermented sausage) was investigated. Fish collagen hydrolysates were encapsulated with maltodextrin (MD) which has two different dextrose equivalent (12DE and 19 DE), with two different types of core/coating material ratios (10% peptide : 90% MD, 20% peptide : 80% MD). Than six group of sucuk dough (control, peptide, MD1210, MD1220, MD1910, MD1920) prepared and naturally fermented. The effects of the ripening period (28 d), treatment (peptide and encapsulated peptide addition) 'ripening period ${\times}$ treatment' interaction on sucuk's pH, lactic acid contents, $a_w$ values and moisture contents were statistically significant (p<0.01). The pH, moisture and $a_w$ decrease and lactic acid concentration increses during ripening period. The highest pH was observed with peptide added group (5.41), and encapsulated peptide added groups (4.76-4.77) were lower than the control group (5.26). Lactic acid concentration was affected from treatment and all treatment groups lactic acid concentration (0.185-0.190%) were higher than the control group (0.164%). Antioxidant and Angiotensin converting enzyme inhibition activities of water soluble protein extracts were significantly (p<0.01) increased during ripening time. Antioxidant activity reached the highest level at $28^{th}$ d. There was no significant increase observed after fermentation for both activities. Antioxidant activity of encapsulated peptide added (%39.56-40.48) groups were higher than control (34.28%) and peptide added (33.99%) groups except MD1920 (38.30%). The effect of the ripening period of the sucuk samples on TBA values was found to be statistically significant (p<0.01) while treatment and 'ripening period ${\times}$ treatment' interaction were not to be significant (p<0.05). The value of hardness was the highest in the encapsulated peptide added groups (29.27, 35.83 N), and it was 20.40 N and 15.41 N in the peptide added group and the control group respectively.

Peptide Inhibitor for Angiotensin-Converting Enzyme from Thermolysin Hydrolysate of Manila Clam Proteins

  • Lee Tae-Gee;Yeum Dong-Min;Kim Young-Sook;Yeo Saeng-Gyu;Lee Yong-Woo;Kim Jin-Soo;Kim In-Soo;Kim Seon-Bong
    • Fisheries and aquatic sciences
    • /
    • v.8 no.2
    • /
    • pp.109-112
    • /
    • 2005
  • A peptide that inhibits angiotensin-converting enzyme (ACE) was isolated from a hydrolysate of Manila clam (Ruditapes philippinarum) proteins prepared with thermolysin. Amino acid sequence of the peptide was determined to be Leu-Leu-Pro. Chemically synthesized Leu-Leu-Pro had an $IC_{50}\;value\;of\;158\;\mu{M}$. Peptides related to the Manila clam-derived peptide were synthesized to study the structure-activity relationships. The tetrapeptide, Leu-Leu-Pro-Pro, had a very weak effect on the enzyme. However, Leu-Leu-Pro-Asn showed no inhibitory activity.

Isolation of HIV-1 Pretense Inhibiting Peptide from Thermolysin Hydrolysate of Manila Clam Proteins

  • Lee, Tae-Gee;Yeum, Dong-Min
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.154-157
    • /
    • 2003
  • A peptide inhibiting HIV-1 pretense was isolated from the hydrolysate of manila clam (Ruditapes philippinarum) proteins digested with thermolysin. The peptide was purified by using membrane filtration, gel permeation chromatography, ion exchange chromatography, and reverse phase HPLC, The amino acid sequence of the peptide was determined to be Ile-Tyr-Glu-Gly. This tetrapeptide sequence exists in some proteins of Physarum polycephalum and Mycobacterium smegmatis. Chemically synthesized Ile-Tyr-Glu-Gly showed the $IC_{50}$/ value of 22.3 $\mu$M.

The Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Rainbow Trout Muscle Hydrolysate

  • Kim, Sung-Rae;Byun, Hee-Guk
    • Fisheries and aquatic sciences
    • /
    • v.15 no.3
    • /
    • pp.183-190
    • /
    • 2012
  • The purpose of this study was the purification and characterization of an angiotensin I converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of rainbow trout Oncorhynchus mykiss muscle. After removal of lipid, the approximate composition analysis of the rainbow trout revealed 24.4%, 1.7%, and 68.3% for protein, lipid, and moisture, respectively. Among six hydrolysates, the peptic hydrolysate exhibited the highest ACE inhibitory activity. We attempted to purify ACE inhibitory peptides from peptic hydrolysate using high performance liquid chromatography on an ODS column. The $IC_{50}$ value of purified ACE inhibitory peptide was $63.9{\mu}M$. The amino acid sequence of the peptide was identified as Lys-Val-Asn-Gly-Pro-Ala-Met-Ser-Pro-Asn-Ala-Asn, with a molecular weight of 1,220 Da, and the Lineweaver-Burk plots suggested that they act as a competitive inhibitor against ACE. Our study suggested that novel ACE inhibitory peptides purified from rainbow trout muscle protein may be beneficial as anti-hypertension compounds in functional foods.

Antimicrobial Activity of Gluten Hydrolysate with Asp. saitoi Protease (밀 단백 효소 가수분해물의 항균활성)

  • Lee, Sang-Duk;Joo, Jeong-Hyeon;Lee, Gyu-Hee;Lee, K.T.;Oh, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.745-751
    • /
    • 2003
  • This study was carried out to investigate whether peptide produced from wheat protein by enzyme hydrolysis can be used as a natural antimicrobial agent. Antimicrobial peptide was obtained from wheat protein hydrolyzed by 7 of pretense. The produced antimicrobial peptide was purified through ultrafiltration, membrane filtration and HPLC and molecular weight and amino acid sequence of the purified antimicrobial peptide were determined. Among hydrolysate produced from wheat protein by 7 of protease, antimicrobial activity was observed for the peptide obtained from Asp. saito protease. The Asp. saito protease did produce antimicrobial hydrolysate showing the highest antimicrobial activity at reaction condition of 37$^{\circ}C$ and pH 6.0, but not at reaction condition above 5$0^{\circ}C$. Wheat protein hydrolysate was fractionated by membrane filtration and showed antimicrobial activity between molecular weight 1,000~3,000. The antimicrobial activity fraction obtained by membrane filtration was separated through HPLC and showed antimicrobial activity in the peak of retention time 31.1~31.8 min. We could convince this hydrolysate as heat-stable peptide since antimicrobial activity was maintained after treated with heat for 15 min at 121$^{\circ}C$. Molecular weight of antimicrobial peptide identified by MALDI-mass was 1,633. Amino acid sequence of antimicrobial peptide was cysteine, glycine, prolin, prolin, prolin, valine, valine, alanine, alanine and arginine.

Antimicrobial activity of protein hydrolysate by protease (효소 단백 가수분해물의 항균 활성)

  • Joo, Jeong-Hyeon;Yi, Sang-Duk;Lee, Jeong-Ok;Oh, Man-Jin;Rhee, K.C.
    • Korean Journal of Agricultural Science
    • /
    • v.29 no.2
    • /
    • pp.78-90
    • /
    • 2002
  • This study was carried out to investigate whether peptide produced from wheat protein by enzyme hydrolysis can be used as a natural antimicrobial agent. Antimicrobial peptide was obtained from wheat protein by protease of 7 species. The produced antimicrobial peptide was purified through ultrafiltration, membrane filtration and HPLC, and molecular weight and amino acid sequence of the purified antimicrobial peptide were determined. Among hydrolysate produced from wheat protein by protease of 7 species, antimicrobial activity was observed for the peptide obtained from Asp. saito protease. The Asp. saito protease did production antimicrobial hydrolysate showing the highest antimicrobial activity at reaction condition of $37^{\circ}C$ and pH 6.0, but not at reaction condition above $50^{\circ}C$. Wheat protein hydrolysate was fractionated by membrane filtration and showed antimicrobial activity between molecular weight 1,000 - 3,000. The antimicrobial activity fraction obtained by membrane filtration was separated through HPLC and showed antimicrobial activity in the peak of retention time 31.1 - 31.8 min. Since after wheat protein protease hydrolysate was heated during 15 min at $121^{\circ}C$, antimicrobial activity was maintained, we could be conviction as heat-stable peptide. Molecular weight of antimicrobial peptide identified by MALDI-mass was 1,633. Amino acid sequence of antimicrobial peptide was cysteine, glycine, prolin, prolin, prolin, valine, valine, alanine, alanine and arginine.

  • PDF

Purification and Characterization of Antioxidative Peptides from Bovine Skin

  • Kim, Se-Kwon;Kim, Yong-Tae;Byun, Hee-Guk;Park, Pyo-Jam;Ito, Hisashi
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • To identify the antioxidative peptides in the gelatin hydrolysate of bovine skin, the gelatin was hydrolyzed with serial digestions in the order of Alcalase, pronase E, and collagenase using a three-step recycling membrane reactor. The second enzymatic hydrolysate (hydrolyzed with pronase E) was composed of peptides ranging from 1.5 to 4.5 kDa, and showed the highest antioxidative activity, as determined by the thiobarbituric acid method. Three different peptides were purified from the second hydrolysate using consecutive chromatographic methods. This included gel filtration on a Sephadex G-25 column, ion-exchange chromatography on a SP-Sephadex C-25 column, and high-performance liquid chromatography on an octadecylsilane chloride column. The isolated peptides were composed of 9 or 10 amino acid residues. They are: Gly-Glu-Hyp-Gly-Pro-Hyp-Gly-Ala-Hyp (PI), Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp-Gly (PII), and Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp (PIII), as characterized by Edman degradation and fast-atom bombardment mass spectrometry. The antioxidative activities of the purified peptides were measured using the thiobarbituric acid method, and the cell viability with a methylthiazol tetrazolium assay The results showed that PII had potent antioxidative activity on peroxidation of linoleic acid. Moreover, the cell viability of cultured liver cells was significantly enhanced by the addition of the peptide. These results suggest that the purified peptide, PII, from the gelatin hydrolysate of bovine skin is a natural antioxidant, which has potent antioxidative activity.

  • PDF