• 제목, 요약, 키워드: hydrologic condition

검색결과 115건 처리시간 0.042초

최적화 기법을 이용한 임하호유역 대표 CN값 추정 (Regionalization of CN values at Imha Watershed with SCE-UA)

  • 전지홍;김태동;최동혁
    • 한국농공학회논문집
    • /
    • v.53 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • Curve Numbers (CN) for the combination of land use and hydrologic soil group were regionalized at Imha Watershed using Long-term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA. The L-THIA was calibrated during 1991-2000 and validated during 2001-2007 using monthly observed direct runoff data. The Nash-Sutcliffe (NS) coefficients for calibration and validation were 0.91 and 0.93, respectively, and showed high model efficiency. Based on the criteria of model calibration, both calibration and validation represented 'very good' fit with observe data. The spatial distribution of direct surface runoff by L-THIA represented runoff from Thiessen pologen at Subi and Sukbo rain gage station much higher than other area due to the combination of poor hydrologic condition (hydrologic soil C and D group) and locality heavy rainfall. As a results of hydrologic condition and treatment for land use type based on calibrated CNs, forest is recommended to be hydrologically modelled dived into deciduous, coniferous, and mixed forest due to the hydrological difference. The CNs for forest and upland showed the poor hydrologic condition. The steep slope of forest and alpine agricultural field make high runoff rate which is the poor hydrologic condition because CN method can not consider field slope. L-THIA linded with SCE-UA could generated a regionalized CNs for land use type with minimized time and effort, and maximized model's accuracy.

SCE-UA 최적화기법에 의한 낙동강 유역의 CN값 도출 (Regionalization of CN Parameters for Nakdong River Basin using SCE-UA Algorithm)

  • 전지홍;최동혁;김정진;김태동
    • 한국물환경학회지
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2009
  • CN values are changed by various surface condition, which is cover type or treatment, hydrologic condition, or percent impervious area, even the same combination of land use and hydrologic soil group. In this study, CN parameters were regionalized for Nakdong River Basin by Long-Term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA, which is one of the global optimization technique. Six watersheds were selected for calibration (optimization) and periodic validation and two watersheds for spatical validation as ungauged watershed within Nakdong River Basin. Nash-Sutcliffe (NS) values were 0.66~0.86 for calibration, 0.68~0.91 for validation, and 0.60 and 0.85 for ungauged watersheds, respectively. Urban area for the selected watersheds covered high impervious area with 85% for residential area and 92% for commercial/industrial/transportation area. Hydrologic characteristics for crop area was similar to row crop with contoured treatment and poor hydrologic condition. For the forested area, hydrologic characteristics could be clearly distinguished from the leaf types of plant. Deciduous, coniferous, and mixed forest showed low, moderate, and high runoff rates by representing wood with fair and poor hydrologic condition, and wood-grass combination with fair hydrologic condition, respectively. CN parameters from this study could be strongly recommended to be used to simulate runoff for ungauged watershed.

강우상태에 따른 소수력발전입지의 설계변수 특성 분석 (Analysis on Design Parameters of Small Hydropower Sites with Rainfall Conditions)

  • 이철형;박완순
    • 한국태양에너지학회 논문집
    • /
    • v.32 no.4
    • /
    • pp.59-64
    • /
    • 2012
  • The correlation between hydrologic performance design parameters of small hydro power(SHP) sites and rainfall condition have been analyzed for major river systems. The model, which can predict flow duration characteristic of stream, was developed to estimate the inflow caused from rainfall. And another model to predict hydrologic performance for SHP plants is established. Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems. It was found that the hydrologic performance design parameters such as specific design flowrate and specific output were affected by rainfall condition in basin area of SHP sites.

강우형태변화에 의한 소수력발전소 수문학적 성능의 변화 (Hydrologic Performance Change of Small Scale Hydro Power Plant with Rainfall Condition Change)

  • 박완순;이철형
    • 한국태양에너지학회 논문집
    • /
    • v.29 no.6
    • /
    • pp.56-61
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to climate change have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis far rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. However climate change gave small effect in load factor of existing SSHP plant. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

TOPLATS 지표해석모형 기반의 고해상도 수문성분 평가 (Evaluation of High-Resolution Hydrologic Components Based on TOPLATS Land Surface Model)

  • 이병주;최영진
    • 대기
    • /
    • v.22 no.3
    • /
    • pp.357-365
    • /
    • 2012
  • High spatio-temporal resolution hydrologic components can give important information to monitor natural disaster. The objective of this study is to create high spatial-temporal resolution gridded hydrologic components using TOPLATS distributed land surface model and evaluate their accuracy. For this, Andong dam basin is selected as study area and TOPLATS model is constructed to create hourly simulated values in every $1{\times}1km^2$ cell size. The observed inflow at Andong dam and soil moisture at Andong AWS site are collected to directly evaluate the simulated one. RMSEs of monthly simulated flow for calibration (2003~2006) and verification (2007~2009) periods show 36.87 mm and 32.41 mm, respectively. The hourly simulated soil moisture in the cell located Andong observation site for 2009 is well fitted with observed one at -50 cm. From this results, the cell based hydrologic components using TOPLATS distributed land surface model show to reasonably represent the real hydrologic condition in the field. Therefore the model driven hydrologic information can be used to analyze local water balance and monitor natural disaster caused by the severe weather.

토양수분 저류 기반의 간결한 준분포형 수문분할모형 개발 (Development of Parsimonious Semi-Distributed Hydrologic Partitioning Model Based on Soil Moisture Storages)

  • 최정현;김령은;김상단
    • 한국물환경학회지
    • /
    • v.36 no.3
    • /
    • pp.229-244
    • /
    • 2020
  • Hydrologic models, as a useful tool for understanding the hydrologic phenomena in the watershed, have become more complex with the increase of computer performance. The hydrologic model, with complex configurations and powerful performance, facilitates a broader understanding of the effects of climate and soil in hydrologic partitioning. However, the more complex the model is, the more effort and time is required to drive the model, and the more parameters it uses, the less accessible to the user and less applicable to the ungauged watershed. Rather, a parsimonious hydrologic model may be effective in hydrologic modeling of the ungauged watershed. Thus, a semi-distributed hydrologic partitioning model was developed with minimal composition and number of parameters to improve applicability. In this study, the validity and performance of the proposed model were confirmed by applying it to the Namgang Dam, Andong Dam, Hapcheon Dam, and Milyang Dam watersheds among the Nakdong River watersheds. From the results of the application, it was confirmed that despite the simple model structure, the hydrologic partitioning process of the watershed can be modeled relatively well through three vertical layers comprising the surface layer, the soil layer, and the aquifer. Additionally, discussions were conducted on antecedent soil moisture conditions widely applied to stormwater estimation using the soil moisture data simulated by the proposed model.

수문계획모델에 있어서 Landsat 영상의 응용(1) (An Application of Landsat Image in Development of Hydrologic Planning Model(1))

  • 양인태;김욱남;이권중
    • 대한토목학회논문집
    • /
    • v.12 no.1
    • /
    • pp.159-166
    • /
    • 1992
  • Landsat 자료는 그 자체만으로도 가치가 있으며, 이를 양적인 정보로 분류하여 실사용자에게 전수하면 그 가치는 더욱 증대될 것이다. 이러한 관점에서 Landsat 자료로부터 수문 매개변수를 양적으로 산정하고, 이를 이용할 수문학자에게 전수될 수 있는 수문모델을 개발하는 것은 매우 가치가 있다 이 연구는 그러한 목적을 수행하기 위한 첫단계이다. 본 논문은 토지조건과 유출의 관계로 결정될 수 있는 수문모델의 결과와 그 모텔 에 적용할 수 있는 사진영상 및 수치영상의 해석절차를 포함한다. 결국 이 논문은 Landsat 영상이 매우 유용하고 경제적이며, 광역의 유역에서 수문모델에 대하여 충분히 정확한 정보를 제공한다는 것을 보인다.

  • PDF

장기유입량 변화에 의한 소수력발전소 성능특성분석 (Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Long Term Inflow Condition Change)

  • 박완순;이철형
    • 신재생에너지
    • /
    • v.5 no.4
    • /
    • pp.39-43
    • /
    • 2009
  • The variation of inflow at stream and hydrologic performance for small scale hydro power(SSHP) plants due to climate change have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SSHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The existing SSHP plant located in upstream of Andong dam was selected and analyzed hydrologic performance characteristics. The predicted results from the developed models show that the data were in good agreement with measured results of long term inflow at Andong dam and the existing SSHP plant. Inflow and ideal hydro power potential had increased greatly in recent years, however, these did not lead annual energy production increment of existing SSHP plant. As a results, it was found that the models represented in this study can be used to predict the primary design specifications and inflow of SSHP plants effectively.

  • PDF

강우형태 변화에 의한 소수력발전소 성능특성분석 (Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Rainfall Condition Change)

  • 박완순;이철형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.614-618
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site such as design flowrate due to rainfall condition of recent period varied sensitively. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

수계별 소수력자원의 수문학적 성능특성 (Hydrologic Performance Characteristics of Small Hydro Power Resources for River Systems)

  • 박완순;이철형
    • 한국태양에너지학회 논문집
    • /
    • v.30 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • The hydrologic performance characteristics of small hydro power(SHP) sites located in four major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. The results from hydrologic performance analysis for SHP sites located on five major river systems based on the models developed in this study show that the specific design flowrate and specific output of SHP site have large difference between the river systems.