• Title, Summary, Keyword: holomorphic jets

Search Result 1, Processing Time 0.022 seconds


  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.341-365
    • /
    • 2011
  • In this paper, we establish general stratawise higher jet evaluation transversality of J-holomorphic curves for a generic choice of almost complex structures J (tame to a given symplectic manifold (M, $\omega$)). Using this transversality result, we prove that there exists a subset $\cal{J}^{ram}_{\omega}\;{\subset}\;\cal{J}_{\omega}$ of second category such that for every $J\;{\in}\;\cal{J}^{ram}_{\omega}$, the dimension of the moduli space of (somewhere injective) J-holomorphic curves with a given ramication prole goes down by 2n or 2(n - 1) depending on whether the ramication degree goes up by one or a new ramication point is created. We also derive that for each $J\;{\in}\;\cal{J}^{ram}_{\omega}$ there are only a finite number of ramication profiles of J-holomorphic curves in a given homology class $\beta\;{\in}\;H_2$(M; $\mathbb{Z}$) and provide an explicit upper bound on the number of ramication proles in terms of $c_1(\beta)$ and the genus g of the domain surface.