• Title/Summary/Keyword: high hydrostatic pressure

Search Result 75, Processing Time 0.121 seconds

Cognitive Enhancing Activity of the Steamed and Fermented Extracts of Codonopsis lanceolata Radix (양유(洋乳)의 증숙 및 발효 추출물의 인지능 개선 활성)

  • Weon, Jin Bae;Yun, Bo-Ra;Lee, Jiwoo;Eom, Min Rye;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • YAKHAK HOEJI
    • /
    • v.57 no.5
    • /
    • pp.323-329
    • /
    • 2013
  • This study was designed to determine and compare the cognitive enhancing effect of various Codonopsis lanceolata extracts by steaming, fermentation and high hydrostatic pressure process. We prepared water extract of C. lanceolata, steamed C. lanceolata, steamed and fermented C. lanceolata and C.lanceolata by high hydrostatic pressure process and fermentation. Cognitive enhancing effect of extracts was evaluated in scopolamine-induced memory impairment mice using by passive avoidance test and Morris water maze tests. MTT assay was conducted to investigate neuroprotective effect on glutamate induced cell death in HT22 cells. Steamed and fermented C. lanceolata water extract decreased escape latency in Morris water maze test and increased the latency time of the passive avoidance test compared to other extracts. Furthermore, the steamed and fermented C. lanceolata water extract showed neuroprotective effect. These results suggest that steaming and fermentation process more improve cognitive enhancing effect of C. lanceolata than other process.

Ginsenoside composition of Panax ginseng flower extracts obtained using different high hydrostatic pressure extraction conditions

  • Kim, Hyun Soo;Kim, Gyu Ri;Kim, Donghyun;Zhang, Cheng-Yi;Lee, Eun-Soo;Park, Nok Hyun;Park, Junseong;Lee, Chang Seok;Shin, Moon Sam
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.56-60
    • /
    • 2019
  • Ginsenosides are active constituents of ginseng (Panax ginseng) that have possible anti-aging, physiological and pharmacological activities, such as anti-cancer and anti-inflammatory effects. Although the ginseng root is generally used more often than the aerial parts for medicinal purposes, the flowers also contain numerous ginsenosides, including Rb2, Rc, Rd, Re and Rg1. Therefore, an extract from the flowers of the P. ginseng could have the pharmacological efficacy of bioactive compounds including ginsenosides. The high hydrostatic pressure extraction (HHPE) is a method that is used for the efficient extraction of bioactive compounds from plant materials. In this study, we compared the yield of ginsenosides from ginseng flowers under different conditions of extraction pressure and time of HHPE. The results indicate that the total yield of the ginsenosides improved as the pressure increased from 0.1 to 80 MPa and treatment duration increased to 24 hours. In addition, the ginsenoside extracts from HHPE at 80 MPa, which possessed a higher total ginsenoside concentration, decreased the viability of the primary human epidermal keratinocytes (HEKs) significantly than the ginsenoside extracts from HHPE at 0.1 MPa. Collectively, we found that the method of HHPE that was performed for 24 hours at 80 MPa showed the highest yield of ginsenosides from the flowers of P. ginseng. In addition, our study provides a foundation for the efficient extraction of ginsenosides, which had a potent bioactivity, from flowers of P. ginseng through HHPE.

Identification of Microorganisms in Duck Meat Products Available in Korea and the Effect of High Hydrostatic Pressure

  • Kim, Hyun-Joo;Yong, Hae In;Lee, Hyun Jung;Jung, Samooel;Kwon, Joong-Ho;Heo, Kang Nyung;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.283-288
    • /
    • 2016
  • The objective of this study was to investigate the microbial count of duck meat and duck meat products commercially available in Korea. High hydrostatic pressure (HHP) treatment was applied at 0.1, 300, 400, and 500 MPa for 5 min to enhance the microbiological safety of duck meats. The levels of total aerobic bacteria were in the ranges of 3.53-6.19 and 3.62-6.85 Log CFU/g in raw and smoked duck products, respectively. By DNA sequence analysis, we identified microorganisms responsible for spoilage, with the most common species in the raw and smoked duck products being Aeromonas spp. or Pseudomonas spp. and Leuconostoc mesenteroides, respectively. HHP treatment significantly reduced the levels of total aerobic bacteria in raw and smoked duck products. This study demonstrates that HHP treatment may be used to effectively improve the safety of raw and smoked duck meat products.

Development of ginseng powder using high hydrostatic pressure treatment combined with UV-TiO2 photocatalysis

  • Lee, Hyunah;Shahbaz, Hafiz Muhammad;Ha, Namho;Kim, Jeong Un;Lee, Sang Jun;Park, Jiyong
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.154-160
    • /
    • 2020
  • Background: Korean ginseng (Panax ginseng Meyer) powder is in rising demand because powder forms of foods are convenient to handle and are highly preservable. However, ginseng powder (GP) manufactured using the conventional process of air drying and dry milling suffers nutrient destruction and a lack of microbiological safety. The objective of this study was to prepare GP using a novel process comprised of UV-TiO2 photocatalysis (UVTP) as a prewashing step, wet grinding, high hydrostatic pressure (HHP), and freeze-drying treatments. Methods: The effects of UVTP and HHP treatments on the microbial population, ginsenoside concentration, and physiological characteristics of GP were evaluated. Results: When UVTP for 10 min and HHP at 600 MPa for 5 min were combined, initial 4.95 log CFU/g-fw counts of total aerobes in fresh ginseng were reduced to lower than the detection limit. The levels of 7 major ginsenosides in UVTP-HHP-treated GP were significantly higher than in untreated control samples. Stronger inhibitory effects against inflammatory mediator production and antioxidant activity were observed in UVTP-HHP-treated GP than in untreated samples. There were also no significant differences in CIELAB color values of UVTP-HHP-treated GP compared with untreated control samples. Conclusion: Combined processing of UVTP and HHP increased ginsenoside levels and enhanced the microbiological safety and physiological activity of GP.

Microbial Changes of Salted and Fermented Shrimp by High Hydrostatic Pressure Treatment (초고압처리에 의한 새우젓의 미생물변화)

  • Mok, Chul-Kyoon;Song, Ki-Tae;Lee, Sang-Ki;Park, Jong-Hyun;Woo, Gun-Jo;Lim, Sang-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.349-355
    • /
    • 2000
  • This study was conducted to enhance the storage stability of fermented shrimp with different salt contents using a high hydrostatic pressure. The effects of the magnitude of pressure and treatment time on the microorganisms of the fermented shrimp were investigated. The highest microbial counts with respect to the salt levels were observed at 18% salt, showing $3.4{\times}10^5\;CFU/g$ for general bacteria, $6.4{\times}10^4\;CFU/g$ for halophilic bacteria, $4.2{\times}10^5\;CFU/g$ for yeast and $3.0{\times}10^4\;CFU/g$ for halophilic yeast. The degree of sterilization increased with the magnitude of pressure and treatment time, and the sterilization could be analyzed by the first order reaction kinetics. The sterilization rate constants $(k_p)$ of the halophilic bacteria was lower than that of general bacteria. The $log(k_p)$ increased linearly with pressure and the slope of the regression line of the halophilic bacteria was greater than that of general bacteria, indicating that the sterilization of the halophilic bacteria was more dependent on the pressure. High hydrostatic pressure treatment was an effective non-thermal sterilization method for the salted and fermented shrimp, and the optimum treatment condition was for 10 min at 6,500 atm.

  • PDF

Quality Improvement of Galbijjim Using Superheated Steam and High Hydrostatic Pressure (Superheated Steam과 High Hydrostatic Pressure에 의한 갈비찜의 품질 개선 효과)

  • Seo, Sang-Hee;Kim, Eun-Mi;Kim, Young-Boong;Cho, Eun-Kyung;Woo, Hyun-Jung;Lee, Min-A
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1423-1430
    • /
    • 2014
  • This study investigated the effects of superheated steam (SHS) and high hydrostatic pressure (HHP) on the quality of Galbijjim. SHS cooking increased moisture and crude fat contents and decreased crude protein contents (P<0.05). The value of L was significantly higher upon SHS cooking compared to conventional cooking (CC), whereas a and b values were not significantly different among the samples. Hardness decreased more upon CC than SHS. The results of the safety storage experiment at refrigeration temperature showed that the total number of bacteria was lower in SHS-HHP than in CC-HHP. The thiobarbituric acid value increased to 0.70~1.56 mg malonaldehyde (MA)/kg in CC-HHP after 15 days, and SHS-HHP showed 0.69 (0 day)~1.24 (15 days, $10^{\circ}C$) mg MA/kg. Volatile basic nitrogen value was 18.07~36.76 mg% in CC-HHP, and that in SHS-HHP also increased to 17.06 (0 day)~35.76 mg% (15 days, $10^{\circ}C$). Overall, SHS cooking and HHP reduced microorganisms, which could improve product quality and sanitation.

Effects of Immersion Liquid and High Hydrostatic Pressure on the Physicochemical Quality Characteristics of Scomber japonicus (침지액 및 초정수압의 병행처리에 의한 고등어(Scomber japonicus)의 물리화학적 품질 특성 변화)

  • Park, Ji-Hye;Bae, Nan-Young;Park, Sun-Hee;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Choi, Jung-Su;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.150-155
    • /
    • 2016
  • This study investigated the effects of combined treatments of immersion liquid and high hydrostatic pressure (HHP, 100−400 MPa) on the quality of mackerel. In this study, we measured viable cell counts, pH level, color value, texture properties, and sensory evaluation of mackerel. Viable cell counts of mackerel treated with combined HHP were decreased by 2 log cycles at 300 MPa and 400 MPa compared to the control. The pH values of mackerel treated with HHP at 300 MPa and 400 MPa were higher than that of other samples. Hardness, gumminess, and chewiness decreased when treated with combined HHP and increased with increase in HHP. Lightness and whiteness of mackerel increased, but redness decreased, with increase in HHP. In case of sensory evaluation, texture of mackerel treated with HHP at 300 MPa and 400 MPa showed higher scores than that of other samples. These results suggest that immersion liquid and HHP treatments can increase microbiological safety and improve textural properties of mackerel.