• Title, Summary, Keyword: harmonic loading

Search Result 84, Processing Time 0.044 seconds

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

Using harmonic class loading for damage identification of plates by wavelet transformation approach

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.253-274
    • /
    • 2011
  • In this paper, the harmonic displacement response of a damaged square plate with all-over part-through damage parallel to one edge is utilized as the input signal function in wavelet analysis. The method requires the properties of the damaged plate, i.e., no information about the original undamaged structure is required. The location of damage is identified by sudden changes in the spatial variation of transformed response. The incurred damage causes a change in the stiffness or mass of the plate. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this study via numerical examples shown by using harmonic response is more versatile and effective compared with the static deflection response, specially in the presence of noise. In the light of the obtained results, suggestions for future work are presented and discussed.

Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method

  • Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.35-48
    • /
    • 2018
  • In this paper, the response of a sandwich cylindrical shell over any sort of boundary conditions and under a general distributed static loading is investigated. The faces and the core are made of some isotropic materials. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. For the core material it is assumed to be thick and the in-plane stresses are negligible. The governing equations are derived using the principle of the stationary potential energy. Using harmonic differential quadrature method (HDQM) the equations are solved for deformation components. The obtained results primarily are compared against finite element results. Then, the effects of changing different parameters on the stress and displacement components of sandwich cylindrical shells are investigated.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Level Number Effect on Performance of a Novel Series Active Power Filter Based on Multilevel Inverter

  • Karaarslan, Korhan;Arifoglu, Birol;Beser, Ersoy;Camur, Sabri
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.711-721
    • /
    • 2018
  • This paper presents a single-phase asymmetric half-bridge cascaded multilevel inverter based series active power filter (SAPF) for harmonic voltage compensation. The effect of level number on performance of the proposed SAPF is examined in terms of total harmonic distortion (THD) and system efficiency. Besides, the relationship between the level number and the number of switching device are compared with the other multilevel inverter topologies used in APF applications. The paper is also aimed to demonstrate the capability of the SAPF for compensating harmonic voltages alone, without using a passive power filter (PPF). To obtain the required output voltage, a new switching algorithm is developed. The proposed SAPF with levels of 7, 15 and 31 is used in both simulation and experimental studies and the harmonic voltages of the load connected to the point of common coupling (PCC) is compensated under two different loading conditions. Furthermore, very high system efficiency values such as 98.74% and 96.84% are measured in the experimental studies and all THD values are brought into compliance with the IEEE-519 Standard. As a result, by increasing the level number of the inverter, lower THD values can be obtained even under high harmonic distortion levels while system efficiency almost remains the same.

An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids

  • Lorzadeh, Iman;Abyaneh, Hossein Askarian;Savaghebi, Mehdi;Lorzadeh, Omid;Bakhshai, Alireza;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1658-1671
    • /
    • 2017
  • To address the inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids (MGs) with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on the active compensation of circulating voltage drops is proposed in this paper. Using the proposed strategy, reactive power and harmonic currents are shared accurately and proportionally without knowledge of the feeder impedances. Since the proposed local controller consists of two well-separated fundamental and harmonic voltage control branches, the reactive power and harmonic currents can be independently shared without having a remarkable effect on the amplitude or quality of the DGs voltage, even if nonlinear (harmonic) loads are directly connected at the output terminals of the units. In addition, accurate load sharing can also be attained when the plug-and-play performance of DGs and various loading conditions are applied to MGs. The effects of communication failures and latency on the performance of the proposed strategy are also explored. The design process of the proposed control system is presented in detail and comprehensive simulation studies on a three-phase MG are provided to validate the effectiveness of the proposed control method.

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

Artificial neural network model using ultrasonic test results to predict compressive stress in concrete

  • Ongpeng, Jason;Soberano, Marcus;Oreta, Andres;Hirose, Sohichi
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • This study focused on modeling the behavior of the compressive stress using the average strain and ultrasonic test results in concrete. Feed-forward backpropagation artificial neural network (ANN) models were used to compare four types of concrete mixtures with varying water cement ratio (WC), ordinary concrete (ORC) and concrete with short steel fiber-reinforcement (FRC). Sixteen (16) $150mm{\times}150mm{\times}150mm$ concrete cubes were used; each contained eighteen (18) data sets. Ultrasonic test with pitch-catch configuration was conducted at each loading state to record linear and nonlinear test response with multiple step loads. Statistical Spearman's rank correlation was used to reduce the input parameters. Different types of concrete produced similar top five input parameters that had high correlation to compressive stress: average strain (${\varepsilon}$), fundamental harmonic amplitude (A1), $2^{nd}$ harmonic amplitude (A2), $3^{rd}$ harmonic amplitude (A3), and peak to peak amplitude (PPA). Twenty-eight ANN models were trained, validated and tested. A model was chosen for each WC with the highest Pearson correlation coefficient (R) in testing, and the soundness of the behavior for the input parameters in relation to the compressive stress. The ANN model showed increasing WC produced delayed response to stress at initial stages, abruptly responding after 40%. This was due to the presence of more voids for high water cement ratio that activated Contact Acoustic Nonlinearity (CAN) at the latter stage of the loading path. FRC showed slow response to stress than ORC, indicating the resistance of short steel fiber that delayed stress increase against the loading path.

Operating Characteristics of Molded Case Circuit Breakers by Harmonic Currents (고조파 전류에 의한 배선용 차단기 동작 특성)

  • Jeon, Jeong-Chay;Yoo, Jae-Geun;Lee, Sang-Ick
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.68-74
    • /
    • 2006
  • Malfunction and nuisance tripping of molded case circuit breaker(MCCB) caused by harmonic currents have been reported. But no data is available on the behavior of MCCB under harmonic currents. This paper tested the effects of harmonic currents on four common types of MCCB(thermal, thermal magnetic, magnetic and electronic types). Results of experiment detected no nuisance tripping with any of the breakers tested under test currents, included harmonic current, below rated currents. Additionally it was found that varying harmonic loading conditions did not affect manufacturer specified trip times for thermal only and thermal magnetic circuit breakers. However, under overloaded conditions, trip times of the magnetic only circuit breakers were gradually slowed according to increasing of harmonic currents, and it could cause hazardous overheating of cables. So, the use of magnetic only circuit breakers in the place harmonic currents we serious must be avoided.

Structural Analysis for Bicycle Frame by Type (종류별 이륜차 프레임에 대한 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.146-155
    • /
    • 2012
  • This study aims to analyze durability by comparing displacement on vibration at driving bicycle frame models of 1, 2, 3 and 4. Among maximum equivalent stresses at 4 kinds of models, model 1 has highest value with 410.39 MPa and becomes 30 times than model 4 with lowest value. The natural frequency number at Model 4 increases more than the other models. Among four models, the number of frequency at model 1 becomes lowest at harmonic vibration with real loading condition. In cases of four kinds of models, the maximum stress is shown near the assembly of rear wheel and the maximum displacement is shown near saddle assembly at this harmonic condition. The structural result about this study can be effectively utilized on the design of bicycle frame by investigating durability and prevention against its damage.