• 제목, 요약, 키워드: hand tracking

검색결과 315건 처리시간 0.037초

Hand Tracking and Hand Gesture Recognition for Human Computer Interaction

  • Bai, Yu;Park, Sang-Yun;Kim, Yun-Sik;Jeong, In-Gab;Ok, Soo-Yol;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • v.14 no.2
    • /
    • pp.182-193
    • /
    • 2011
  • The aim of this paper is to present the methodology for hand tracking and hand gesture recognition. The detected hand and gesture can be used to implement the non-contact mouse. We had developed a MP3 player using this technology controlling the computer instead of mouse. In this algorithm, we first do a pre-processing to every frame which including lighting compensation and background filtration to reducing the adverse impact on correctness of hand tracking and hand gesture recognition. Secondly, YCbCr skin-color likelihood algorithm is used to detecting the hand area. Then, we used Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to tracking hand. As the formula-based region of interest is square, the hand is closer to rectangular. We have improved the formula of the search window to get a much suitable search window for hand. And then, Support Vector Machines (SVM) algorithm is used for hand gesture recognition. For training the system, we collected 1500 hand gesture pictures of 5 hand gestures. Finally we have performed extensive experiment on a Windows XP system to evaluate the efficiency of the proposed scheme. The hand tracking correct rate is 96% and the hand gestures average correct rate is 95%.

결합된 파티클 필터에 기반한 강인한 3차원 손 추적 (Robust 3D Hand Tracking based on a Coupled Particle Filter)

  • 안우석;석흥일;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • v.37 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • 손 추적 기술은 인간과 기계와의 효율적인 의사소통을 위한 손동작 인식 기술의 핵심 기반 기술이다. 최근의 손 추적 연구는 3차원 손 모델을 이용한 연구 방향에 초점을 맞추고 있고, 기존의 2차원 손 모델을 이용한 방법보다 강인한 추적 성능을 보이고 있다. 본 논문에서는 결합된 파티클 필터에 기반한 새로운 3차원 손 추적 방법을 제안한다. 이는 전역적 손 형상과 지역적 손가락 움직임을 분리하여 추정하고, 각각의 추정 결과를 서로의 사전 정보로 이용하여 기존의 방법보다 빠르고 강인한 추적을 가능하게 한다. 또한, 추적 성능 향상을 위해 색상과 에지를 함께 고려한 다중 증거 결합 방법을 적용한다. 실험결과, 제안하는 방법은 복잡한 배경이나 동작에서도 강인한 추적 결과를 보였다.

Human-Computer Natur al User Inter face Based on Hand Motion Detection and Tracking

  • Xu, Wenkai;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • v.15 no.4
    • /
    • pp.501-507
    • /
    • 2012
  • Human body motion is a non-verbal part for interaction or movement that can be used to involves real world and virtual world. In this paper, we explain a study on natural user interface (NUI) in human hand motion recognition using RGB color information and depth information by Kinect camera from Microsoft Corporation. To achieve the goal, hand tracking and gesture recognition have no major dependencies of the work environment, lighting or users' skin color, libraries of particular use for natural interaction and Kinect device, which serves to provide RGB images of the environment and the depth map of the scene were used. An improved Camshift tracking algorithm is used to tracking hand motion, the experimental results show out it has better performance than Camshift algorithm, and it has higher stability and accuracy as well.

수화 인식을 위한 얼굴과 손 추적 알고리즘 (Face and Hand Tracking Algorithm for Sign Language Recognition)

  • 박호식;배철수
    • 한국통신학회논문지
    • /
    • v.31 no.11C
    • /
    • pp.1071-1076
    • /
    • 2006
  • 본 논문에서는 수화 인식을 위한 얼굴 및 손 추적시스템을 제안한다. 제안된 시스템은 검출 및 추적 단계로 구분된다. 검출 단계에서는 신호의 주체인 얼굴과 손에 위치한 피부 특징을 이용하였다. CbCr 공간에서의 타원 모델을 구성하여 피부 색상을 검출하고 피부 영역을 분할한다. 그리고 크기와 얼굴 특징을 이용하여 얼굴과 손 영역을 정의한다. 추적 단계에서는 동작 추정을 위하여 첫 번째 손 영역으로 예측된 다음의 손위치를 연산함으로써 두 번째 손의 영역을 유도해낸다. 그러나 갑작스런 움직임의 속도 변화가 있을 경우 연속된 프레임에서 추적된 위치는 부정확하였다. 이러한 점을 해결하고자 손 영역에 대하여 반복적인 재연산을 수행하여 적응적으로 영역을 찾음으로써 오차를 보정하도록 하였다. 실험 결과 제안된 방법은 기존의 방법보다 4%의 처리 시간이 증가된 반면, 예측 오차는 96.87%까지 감소시킬 수 있었다.

최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정 (Parameter Identification of Robot Hand Tracking Model Using Optimization)

  • 이종광;이효직;윤광호;박병석;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • v.13 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

손동작 인식에 의한 컴퓨터 비전 인터페이스 설계 (Design of Computer Vision Interface by Recognizing Hand Motion)

  • 윤진현;이종호
    • 전자공학회논문지CI
    • /
    • v.47 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • 손동작을 통한 입력방법은 컴퓨터와 디지털 기기의 발전에 따라 요구되는 새로운 HCI(Human-Computer Interaction) 방법으로써 그 가능성을 가지고 있으며 이에 대한 다양한 시도가 있었다. 본 논문에서는 컴퓨터 비전을 기반으로 단일 카메라를 사용하는 손 영역 검출 및 추적방법을 제시하고 이에 의한 컴퓨터 인터페이스를 제안한다. 기존에 많이 쓰이는 피부색 매치 방법에 추가하여 형태 정보를 더함으로써 손 영역 검출능력을 향상 시켰다. 이러한 형태 정보를 추출하는 방법으로써 주요 방향 에지 기술자라는 방법을 제안하였고 이는 강력하여 학습 시간 없이 한 가지 손 모델만을 사용하여 손 영역 검출을 할 수 있다. 또한 손 영역 검출과 추적하는 방법을 나누어 추적할 때는 회전에 대한 자유도를 높이도록 설계 하였다. 위 방법을 이용하여 3차원 공간에 그려지는 필기체 숫자 인식에 적용해 보았으며 분류 방법으로 DNAC 알고리즘을 사용하였다. 결과적으로 손 영역 검출은 82%의 검출률을 보였고 필기체 숫자 인식은 90%의 인식률을 보였다.

RGB 카메라 기반 실시간 21 DoF 손 추적 (RGB Camera-based Real-time 21 DoF Hand Pose Tracking)

  • 최준영;박종일
    • 방송공학회논문지
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • 본 논문은 단안의 RGB 카메라를 이용하는 실시간 손 추적 방법을 제안한다. 손은 높은 degrees of freedom을 가지고 있기 때문에 손 추적은 높은 모호성을 가지고 있다. 따라서 제안하는 방법에서는 손 추적의 모호성을 줄이기 위해서 단계별 손 추적 전략을 채택하였다. 제안하는 방법의 추적 과정은 손바닥 포즈 추적, 손가락 yaw 움직임 추적, 그리고 손가락 pitch 움직임 추적, 세 단계로 구성되어 있으며, 각 단계는 순서대로 수행된다. 제안하는 방법은 손은 평면으로 간주할 수 있다고 가정하고, 평면 손 모델을 이용한다. 평면 손 모델은 손 모델을 현재의 사용자 손 모양에 맞춰서 변경하는 손 모델 재생성을 가능하게 하는데, 이는 제안하는 방법의 강건성과 정확도를 증가시킨다. 그리고 제안하는 방법은 실시간 연산이 가능하고 GPU 기반 연산을 요구하지 않기 때문에, Google Glass와 같은 모바일 장비를 포함한 다양한 환경에 적용가능하다. 본 논문은 다양한 실험을 통해서 제안하는 방법의 성능과 효용성을 입증한다.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

운동 히스토리 영상을 활용한 CamShift 기반 손 추적 기법 (Hand Tracking based on CamShift using Motion History Image)

  • 길종인;김미나;황환규;김만배
    • 방송공학회논문지
    • /
    • v.22 no.2
    • /
    • pp.182-192
    • /
    • 2017
  • 본 논문에서는 컬러와 운동 정보를 혼합한 손 추적 시스템을 제안하고자 한다. 손의 검출 및 추적은 많은 경우 피부색을 모델링하여 검출을 하는 방식을 사용한다. 하지만 이와 같은 방법으로는 빛이나 주변 사물에 의해 영향을 많이 받기 때문에 정확한 값을 일정하게 도출해 낼 수 없었다. 또한, 피부색에 의존하므로, 손뿐만 아니라 얼굴 및 비부 색과 비슷한 색을 갖는 배경 등에 의해 추적이 방해받을 수 있다. 이에 본 논문은 운동 히스토리 기법(MHI)을 이용하여 움직임을 파악한 후 이를 CamShift와 결합함으로서, 효과적으로 추적할 수 있도록 설계하였다. 제안된 시스템은 C/C++을 기반으로 구현하였으며, 실험에서 제안 방법이 안정적이고 우수한 성능을 보여줌을 증명하였다.