• Title, Summary, Keyword: gut microbiota

Search Result 144, Processing Time 0.043 seconds

Current Trends and Future Directions of Gut Microbiota and Their-Derived Metabolite Study in the Pediatric Perspective of Korean Medicine (소아과학 관점에서 바라본 장내 미생물 연구 동향과 향후 방향)

  • Ryu, Dongryeol;Kim, Kibong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.34-45
    • /
    • 2019
  • Objectives The purpose of this study is to highlight recent gut-microbiota studies and to encourage gut-microbiota-related researches in Pediatric science of Korean Medicine. Methods We searched gut microbiota related studies and patents via the PubMed database of the US National Institutes of Health (NIH) and the PatentScope database of the UN World Intellectual Property Organization (WIPO) to see current trends of gut microbiota studies. Results All searched research and review articles in gut-microbiota studies were analyzed and presented as two charts, showing the recent trends of gut microbiota research. We summarized and discussed the significance of the selected fifty-six articles. Also, we listed reported gut-microbiota-derived small metabolites, impacting on human health and diseases. Conclusions This study emphasizes the critical roles of gut-microbiota and their-derived small metabolites in the human physiology and pathology. We know and agree that many natural compounds in Korean Medicine could be converted into small metabolites by gut microbiota in our body. Thus, it is important to encourage physicians and researchers of gut microbiota in the arena of Pediatric Korean Medicine. We believe that researchers will find a lot of unknown metabolites produced by gut microbiota from natural compounds in Korean Medicine.

Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women

  • Song, Mi-Young;Kim, Bong-Soo;Kim, Hojun
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.106-115
    • /
    • 2014
  • Background: Gut microbiota is regarded as one of the major factors involved in the control of body weight. The antiobesity effects of ginseng and its main constituents have been demonstrated, but the effects on gut microbiota are still unknown. Methods: To investigate the effect of ginseng on gut microbiota, 10 obese middle-aged Korean women took Panax ginseng extracts for 8 wk and assessment of body composition parameters, metabolic biomarkers, and gut microbiota composition was performed using 16S rRNA gene-based pyrosequencing at baseline and at 8 wk. Significant changes were observed in body weight and body mass index; however, slight changes were observed in gut microbiota. We divided the participants into two groups, the effective and the ineffective weight loss groups, depending on weight loss effect, in order to determine whether the antiobesity effect was influenced by the composition of gut microbiota, and the composition of gut microbiota was compared between the two groups. Results: Prior to ginseng intake, significant differences of gut microbiota were observed between both at phyla and genera and the gut microbiota of the effective and ineffective weight loss groups was segregated on a principal coordinate analysis plot. Conclusion: Results of this study indicate that ginseng exerted a weight loss effect and slight effects on gut microbiota in all participants. In addition, its antiobesity effects differed depending on the composition of gut microbiota prior to ginseng intake.

Gut Microbiota in Inflammatory Bowel Disease

  • Shim, Jung Ok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • The gut mucosal barrier plays an important role in maintaining a delicate immune homeostasis. The pathogenesis of inflammatory bowel disease (IBD) is considered to involve a defective mucosal immunity along with a genetic predisposition. Recent views have suggested an excessive response to components of the gut microbiota in IBD. A condition of "dysbiosis", with alterations of the gut microbial composition, has been observed in patients with IBD. In this article, the author review recent studies of gut microbiota in IBD, particularly the importance of the gut microbiota in the pathogenesis of pediatric IBD.

Gut microbiota-mediated pharmacokinetics of ginseng saponins

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.255-263
    • /
    • 2018
  • Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.

Antimicrobials, Gut Microbiota and Immunity in Chickens

  • Lee, Kyung-Woo;Lillehoj, Hyun S.
    • Korean Journal of Poultry Science
    • /
    • v.38 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The use of antimicrobials will be soon removed due to an increase of occurrence of antibiotic-resistant bacteria or ionophore-resistant Eimeria species in poultry farms and consumers' preference on drug-free chicken meats or eggs. Although dietary antimicrobials contributed to the growth and health of the chickens, we do not fully understand their interrelationship among antimicrobials, gut microbiota, and host immunity in poultry. In this review, we explored the current understanding on the effects of antimicrobials on gut microbiota and immune systems of chickens. Based on the published literatures, it is clear that antibiotics and antibiotic ionophores, when used singly or in combination could influence gut microbiota. However, antimicrobial effect on gut microbiota varied depending on the samples (e.g., gut locations, digesta vs. mucosa) used and among the experiments. It was noted that the digesta vs. the mucosa is the preferred sample with the results of no change, increase, or decrease in gut microbiota community. In future, the mucosa-associated bacteria should be targeted as they are known to closely interact with the host immune system and pathogen control. Although limited, dietary antimicrobials are known to modulate humoral and cell-mediated immunities. Ironically, the evidence is increasing that dietary antimicrobials may play an important role in triggering enteric disease such as gangrenous dermatitis, a devastating disease in poultry industry. Future work should be done to unravel our understanding on the complex interaction of host-pathogen-microbiota-antimicrobials in poultry.

Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups

  • Kim, Bong-Soo;Choi, Chong Won;Shin, Hyoseung;Jin, Seon-Pil;Bae, Jung-Soo;Han, Mira;Seo, Eun Young;Chun, Jongsik;Chung, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.429-440
    • /
    • 2019
  • Several studies have attempted to identify factors associated with longevity and maintenance of health in centenarians. In this study, we analyzed and compared the gut microbiota of centenarians in longevity villages with the elderly and adults in the same region and urbanized towns. Fecal samples were collected from centenarians, elderly, and young adults in longevity villages, and the gut microbiota sequences of elderly and young adults in urbanized towns of Korea were obtained from public databases. The relative abundance of Firmicutes was found to be considerably higher in subjects from longevity villages than those from urbanized towns, whereas Bacteroidetes was lower. Age-related rearrangement of gut microbiota was observed in centenarians, such as reduced proportions of Faecalibacterium and Prevotella, and increased proportion of Escherichia, along with higher abundances of Akkermansia, Clostridium, Collinsella, and uncultured Christensenellaceae. Gut microbiota of centenarians in rehabilitation hospitals were also different to those residing at home. These differences could be due to differences in diet patterns and living environments. In addition, phosphatidylinositol signaling system, glycosphingolipid biosynthesis, and various types of N-glycan biosynthesis were predicted to be higher in the gut microbiota of centenarians (corrected p < 0.05). These three metabolic pathways of gut microbiota can be associated with the immune status and healthy gut environment of centenarians. Although further studies are necessary to validate the function of microbiota between groups, this study provides valuable information on centenarians' gut microbiota.

Serum Cholesterol-lowering Effect of Fermented Milk and Effect of Intestinal Microflora Composition on Function of Fermented Milk (발효유의 혈중 콜레스테롤 조절 기능과 발효유 기능성에 대한 장내 균총 구성의 영향)

  • Kim, Yujin;Yoon, Yohan;Lee, Soomin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Fermented milk has been developed with its functionalities, and its health-promoting ability has been spotlighted due to its relationship with diseases such as cancer, cardiovascular disease, and diabetes, and gut microbiota. As national burden of cardiovascular disease increases over time, there is a need to prevent hypercholesterolemia. To achieve that, gut microbiota, which is altered by host's diet and environment, plays important roles in lowering cholesterol in the blood. Moreover, fermented milk may be effective as a cholesterol-lowering agent by altering gut microbiota composition. Gut microbiota may alter not only functions of the fermented milk but also bio-accessibility of functional materials. These results suggested that gut microbiota composition influences the impact of fermented milk. Thus, we should understand how functional materials are degraded by gut microbiota and absorbed into the gut.

Microbiome Study of Initial Gut Microbiota from Newborn Infants to Children Reveals that Diet Determines Its Compositional Development

  • Ku, Hye-Jin;Kim, You-Tae;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1067-1071
    • /
    • 2020
  • To understand the formation of initial gut microbiota, three initial fecal samples were collected from two groups of two breast milk-fed (BM1) and seven formula milk-fed (FM1) infants, and the compositional changes in gut microbiota were determined using metagenomics. Compositional change analysis during week one showed that Bifidobacterium increased from the first to the third fecal samples in the BM1 group (1.3% to 35.1%), while Klebsiella and Serratia were detected in the third fecal sample of the FM1 group (4.4% and 34.2%, respectively), suggesting the beneficial effect of breast milk intake. To further understand the compositional changes during progression from infancy to childhood (i.e., from three weeks to five years of age), additional fecal samples were collected from four groups of two breast milk-fed infants (BM2), one formula milk-fed toddler (FM2), three weaning food-fed toddlers (WF), and three solid food-fed children (SF). Subsequent compositional change analysis and principal coordinates analysis (PCoA) revealed that the composition of the gut microbiota changed from an infant-like composition to an adult-like one in conjunction with dietary changes. Interestingly, overall gut microbiota composition analyses during the period of progression from infancy to childhood suggested increasing complexity of gut microbiota as well as emergence of a new species of bacteria capable of digesting complex carbohydrates in WF and SF groups, substantiating that diet type is a key factor in determining the composition of gut microbiota. Consequently, this study may be useful as a guide to understanding the development of initial gut microbiota based on diet.

Alterations in Gut Microbiota and Immunity by Dietary Fat

  • Yang, Bo-Gie;Hur, Kyu Yeon;Lee, Myung-Shik
    • Yonsei Medical Journal
    • /
    • v.58 no.6
    • /
    • pp.1083-1091
    • /
    • 2017
  • Gut microbiota play critical physiological roles in energy extraction from the intestine and in the control of systemic immunity, as well as local intestinal immunity. Disturbance of gut microbiota leads to the development of several diseases, such as colitis, inflammatory bowel diseases, metabolic disorders, cancer, etc. From a metabolic point of view, the gut is a large metabolic organ and one of the first to come into contact with dietary fats. Interestingly, excessive dietary fat has been incriminated as a primary culprit of metabolic syndrome and obesity. After intake of high-fat diet or Western diet, extensive changes in gut microbiota have been observed, which may be an underlying cause of alterations in whole body metabolism and nutrient homeostasis. Here, we summarize recent data on changes in the gut microbiota and immunity associated with dietary fat, as well as their relationships with the pathogenesis of metabolic syndrome. These findings may provide insight into the understanding of the complex pathophysiology related to the development of metabolic diseases and offer an opportunity to develop novel candidates for therapeutic agents.