• Title, Summary, Keyword: growth response

Search Result 2,823, Processing Time 0.044 seconds

Characteristics of Growth Response and Nitrogen Fixation of Meiilotus suaveolens Seedlings treated with Al (알루미늄 독성에 의한 전동싸리 유식물의 질소고정과 생장반응의 특성)

  • 박태규;송승달
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.141-148
    • /
    • 1998
  • Effects of alumlnlum(AA), soil pH and calcium(Cal on growth response and heavy metal accumulation and regulation of nitrogen fixation In Melilotus suaveolens seedlings, a biennial legume plant dominating in the disturbed area, were quantitatively analyzed during the growing periods. Accumulation of metals In each organ of M. suaveojens was Increased UC the lowering of pH. Al contents In leaf and root treat- ed with 30ppm Al at pH 4.2 on the 28th day after treatment were 8 and 11 folds higher than those of control, while the contents with 100ppm AA were 21 and 24 folds as compared to control. The significent inhibition in Al contents was induced by 100ppm AA and Ca at pH 6.5. Increased metals inhibited higher at pH 4.2 and the growth inhibition due to Al was reversed by the addition of Ca, suggesting that growth correlates to the pH value. Chlorophyll contents in leaves increased during growth stave were inhibited by Al treatments. The biomass was decreased UD the lowering of pH and the increase of concentrations. 100ppm Ca treatment resulted in 5.1-5.9% increase of the biomass as compared to that of 100ppm Al. Specific nitrogen fuation activities In nodules In the 100ppm Al at pH 4.2 and pH 6.5 were reduced to 35. 2% and 52.2% of control, on the 28th day after treatment, while the combination of Al and Ca induced reduced by 10% as compared to control with the treatment of 100ppm AA at pH 4.2 due to the inhibition bination of 100ppm Al and Ca and lowering of pH.

  • PDF

Partition of Amino Acids Requirement for Maintenance and Growth of Broilers I. Lysine

  • Kim, J.H.;Cho, W.T.;Yang, C.J.;Shin, I.S.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.178-184
    • /
    • 1997
  • Purified diets containing five graded levels of lysine were fed to a total of 125 growing chicks (25 chicks per treatment) to evaluate lysine requirements for growth and maintenance. A model was developed to separate lysine requirement for maintenance from requirement for growth. Based on weight gain response, the daily lysine requirement for growth was 12.06 mg/g gain and the daily lysine requirement for maintenance was 0.332 times metabolic body size ($W^{0.75}$). Similarly, the lysine requirement for growth was 0.457 mg/mg nitrogen gain and the daily lysine requirement for maintenance was 0.344 times metabolic body size. The plateau of plasma lysine concentration was reached at 354.75 mg intake/day. The total lysine requirement was 414.27 mg/day or 1.0% of the diet, 420.11 mg/day or 1.01% of the diet based on weight gain response and N gain response, respectively. Previous lysine requirements for growing chicks of 1-28 days old were in close agreement with these estimates. As a percentage of protein, lysine requirement was calculated to be 7.3% and the reported lysine content of chick muscle crude protein of 7.46% was closely related.

Partition of Amino Acid Requirements of Broilers between Maintenance and Growth. V. Isoleucine and Valine

  • Bae, S.H.;Kim, J.H.;Shin, I.S.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.388-394
    • /
    • 1999
  • Two experiments were conducted to subdivide isoleucine (exp. 1) and valine (exp. 2) requirements for maintenance from the requirements for growth of broilers aged 1 to 3 weeks. Purified diets were used, containing five graded levels of isoleucine and valine. Based on weight gain response, the isoleucine requirement for growth was 7.50 mg/g weight gain and the daily isoleucine need for maintenance (mg) was 0.044 per unit metabolic body size ($(Wg^{0.75})$). Based on the N gain response, the isoleucine requirement for growth was 0.317 mg/mg N gain and the daily isoleucine need for maintenance (mg) was 0.040 per unit metabolic body size $(Wg^{0.75})$. Based on weight gain and N gain response, the total isoleucine requirement was calculated 244 mg/day or 0.59% of the diet, 274 mg/day or 0.66% of the diet, respectively. From the relationship of weight gain and N gain, 5.07% of the retained protein was comprised of isoleucine; the reported isoleucine content of chick muscle was 4.42%. The valine requirement for growth was 9.84 mg/g weight gain and 0.36 mg/mg N gain whereas the maintenance requirement was 0.046 or 0.052 mg per unit of metabolic body size (Wgo.11. According to the model developed to estimate valine requirement, the total requirement was 319 mg/day or 0.77% of the diet, 315 mg/day or 0.76% of the diet, respectively. Previous reported valine requirements for growing chicks of 7~24 days old were in close agreement with these estimates. As a percentage of retained protein, valine was calculated to be 5.81% ; the reported valine concentration of crude protein of chicks' body including feathers was 6.72%.

Growth Response in Hydroponic Cultured Dracaena braunii Grown under Various Chloride Ion Concentrations (수경재배에서 제설제 염소이온 농도에 따른 개운죽 (Dracaena braunii)의 생육반응)

  • Son, Hye-Mi;Park, Ju-Young;Yoon, Young-Han;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1081-1086
    • /
    • 2017
  • The present study was conducted for the purpose of analyzing the growth response of Dracaena braunii treated with chloride ions and to evaluate its salt tolerance. Distilled water (CON) was spiked with 1 (C1), 2 (C2), 5 (C5), 10 (C10) and 15 g/L (C15) $CaCl_2$, respectively. Acidity (pH) and electrical conductivity of hydroponic solution, and leaf width, leaf length, root length, number of leaves, fresh weight, dry weight and the water content of Dracaena braunii were measured. Acidity and electrical conductivity remarkably increased commensurate with increasing concentrations of $CaCl_2$. Growth in the C1 treatment was better than that in CON, whereas the C10 or C15 treatments caused either slow growth or withering of the plants. Fresh weight, dry weight and water content were significantly decreased in response to $CaCl_2$ concentration, compared with those in the control. These results showed that $CaCl_2$ concentration less than 1 g/L may be used as a hydroponic solution for D. braunii, as long as the water quality is not too saline. The chlorine ion has a negative effect on the growth.

Growth Response of Grasses to Chitosan Solution Amended Soil (Chitosan 혼합토양에 대한 목초의 생육반응)

  • 이주삼;조익환;전하준
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.2
    • /
    • pp.93-104
    • /
    • 1997
  • In order to investigate the growth response of grasses to chitosan solution amended soil were studied from the standpoint of estimating the growth stimulating adequate concentrations of chitosan solution amended soil in each grass. Three species in this experiment used were orchardgrass, tall fescue and reed canarygrass. Six different concentrations of chitosan solution amended soil were 0%(control), 0.01%, 0.05%, 0.1%, 0.5% and 1.0%, respectively. The resulte obtained were as follows ; 1. Leaf area(LA), dry weight of leaf(LW), dry weight of shoot(SHW), biological yield(BY), C/f ratio and T/R ratio were significantly different between species. 2. Growth stimulating effect by chitosan solution amended soil were found in plant length(PL) and T/R ratios of grasses. 3. Adequate concentrations of chitosan solution amended soil were different between species. The highest values of yield components and dry weight of plant parts were obtained at 0.01% in orchardgrass, 0,05% in reed canarygrass and 1.0% in tall fescue, respectively. 4. The growth response of grasses to chitosan solution amended soil were different between species. Thus, an increase in leaf area(LA) and dry weight of leaf(LW) by chitosan solution amended soil was mainly contributed to increase in dry weight of shoot(SHW) and biological yield(BY) in orchardgrass. Chitosan solution amended soil also stimulated growth of shoot and increased in biological yield(BY) in tall fescue. In reed canarygrass contributed to increase in C/F ratios. 5. Adequate concentrations of chitosan solution amended soil for an economical benefit of cultivation and dry matter production of grasses were ranged from 0.01% to 0.05% levels.

  • PDF

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon;Lee, Jeongmin;Kim, Jieun;Choi, Hyungseok;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.259-270
    • /
    • 2020
  • Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.

Inhibition of Adventitious Root Growth in Boron-Deficient or Aluminum-Stressed Sunflower Cuttings

  • Hong, Jung-Hee;Go, Eun-Jung;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1189-1196
    • /
    • 2003
  • The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 ${\mu}$M) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

Characteristics and Preparation of Gas Sensor Using ZnO Nanorods Grown by Hydrothermal Process (수열합성법으로 성장된 ZnO 나노로드 가스 센서의 제작 및 특성 연구)

  • Jong, Jong-Hun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.232-235
    • /
    • 2011
  • ZnO nanorods for gas sensors were prepared by a hydrothermal method. The ZnO gas sensors were fabricated on alumina substrates by a screen printing method. The gas-sensing properties of the ZnO nanorods were investigated for $CH_4$ gas. The effects of growth time on the structural and morphological properties of the ZnO nanorods were investigated by X-ray diffraction and scanning electron microscope. The XRD patterns of the nanocrystallized ZnO nanorods showed a wurtzite structure with the (002) predominant orientation. The diameter and length of the ZnO nanorods increased in proportion to the growth time. The sensitivity of the ZnO sensors to 5 ppm $CH_4$ gas was investigated for various growth times. The ZnO sensors exhibited good sensitivity and rapid response-recovery characteristics to $CH_4$ gas, and both traits were dependent on the growth time. The highest sensitivity of the ZnO sensors to $CH_4$ gas was observed with the growth time of 7 h. The response and recovery times were 13 s and 6 s, respectively.

Phytochromes are Involved in the Regulation of Growth and the Gravitropic Response via Ethylene Production in Hypocotyl of Arabidopsis (애기장대의 하배축에서 피토크롬이 생장과 굴중성 반응에 미치는 영향)

  • Lee, Sang Seung;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Light is essential to the growth and development of plants, and it is perceived by phytochromes, which are one of the photoreceptors that regulate physiological responses in plants. Ethylene regulates the dormancy, senescence, growth, and development of organs in plants. This research focused on the interaction of phytochromes and ethylene to control hypocotyl growth and gravitropism using phytochrome mutants of Arabidopsis, phyA, phyB, and phyAB, under three light conditions: red (R) light, farred (FR) light, and white light. The mutant phyAB exhibited the most stimulation of gravitropic response of all three phytochrome mutants and wild type (WT) in all three light conditions. Moreover, phyB in the R light condition showed more negative gravitropism than phyA. However, phyB in the FR light condition showed less curvature than phyA. The hypocotyl growth pattern was similar to the gravitropic response in several light conditions. To explain the mechanism of the regulation of gravitropic response and growth, we measured the ethylene production and activities of in vitro ACS and ACO. Ethylene production was reduced in all the mutants grown in white light in comparison to the WT. Ethylene production increased in the phyA grown in R light and phyB grown in FR light in comparison to the other mutants. The ACS activity coincided with the ethylene production in the phyA and the phyB grown in R light and FR light, respectively. These results suggest that the Pfr form of phyB in R light and the Pr form of phyA in FR light increased ethylene production via increasing ACS activity.

Effect of Light on Root Growth and Gravitropic Response of Phytochrome Mutants of Arabidopsis (Arabidopsis phytochrome mutant에서 빛이 뿌리 생장과 굴중성 반응에 미치는 영향)

  • Park, Ji-Hye;Lee, Sang-Seoung;Woo, Soon-Hwa;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.681-686
    • /
    • 2012
  • Light, one of the environmental stimuli, is fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. To investigate the effect of light on root growth and gravitropism, we used the Arabidopsis phytochrome mutants grown in several light conditions. The root growth of $phyA$ reared in all light conditions except white light and was stimulated compared to the WT. The stimulation of root growth was obvious in $phyA$ grown in red light. On the other hand, the root growth of $phyB$ grown in all light conditions decreased, and the lowest rate of decrease was observed in $phyAB$ grown in white and red light. The gravitropic response of $phyA$ was stimulated compared to the WT when it was grown in all light conditions except far-red light. $PhyAB$ grown in all light conditions showed the inhibition of gravitropic response. The transcript level of ACS, one of the enzymes regulating ethylene biosynthesis, increased in $phyA$ grown in white and red light, but not in $phyA$ grown in far-red light. In conclusion, these results suggested that the $P_{fr}$ form of $phyB$ regulates the root growth and gravitropism.