• Title, Summary, Keyword: greenhouse

Search Result 4,363, Processing Time 0.053 seconds

A Research on the Correct Concept of the Greenhouse Effect (온실 효과에 대한 바른 개념 고찰)

  • Shin Hyoun-Youn;Lee Du-Gon
    • Hwankyungkyoyuk
    • /
    • v.19 no.2
    • /
    • pp.122-132
    • /
    • 2006
  • This research compared the mechanism of the greenhouse effect in the atmosphere with retaining warmth in the actual greenhouse, analyzed the styles of explaining the greenhouse effect in current textbooks, and investigated teachers' and students' degrees of understanding the effect. The mechanisms of the actual greenhouse and the greenhouse effect are not the same. Nevertheless, in all the current textbooks, the radiation phenomenon by the atmosphere is described as the 'greenhouse effect'. Using the words of the 'greenhouse effect' to refer to the effect of air being kept warm by the heat absorbing gases, causes confusion of concepts. To make learners understand the greenhouse effect exactly, concrete principles such as radiating electromagnetic phenomenon should be explained. However, teachers and current textbooks explained the radiating electromagnetic phenomenon as actual greenhouse. Therefore, it is difficult for learners to understand the greenhouse effect, scientifically. Because of this, learners maybe confused about greenhouse effect concepts.

  • PDF

Development of Web-based Management System for Greenhouse Teleoperation (웹을 통한 온실 원격 관리 시스템의 개발)

  • Sim, Ju-Hyeon;Baek, Un-Jae;Park, Ju-Hyeon;Lee, Seok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.750-753
    • /
    • 2003
  • In this paper, we have developed the web-based management system for greenhouse teleoperation. The remote control system consists of database, web-server, controller in greenhouse, and clients. The database in the server stores user informations and greenhouse conditions, and is used to manage user login and conditioning data. The management system developed by using Java applet, which is a client program for effective and easy management of greenhouse, monitors the greenhouse in real time. Master and driver boards installed in greenhouse control unit. Database on flowering to collect and analyze data exchanges data with the server. The greenhouse can be managed effectively by timer routine, repeat control within setting time, and algorithm of setting points. Also, the greenhouse conditions can be controlled by manual or remote controller (PC) through web browser in internet. Furthermore, all of the control devices of the greenhouse are managed by remote control using PC and checked via camera installed in greenhouse.

  • PDF

Analysis of solar radiation and simulation of thermal environment in plastic greenhouse - I. Analysis of solar radiation in plastic greenhouse (플라스틱 온실(溫室)의 일사량분석(日射量分析)과 열적환경(熱的環境)의 시뮬레이션에 관(關)한 연구(硏究) - I. 플라스틱 온실(溫室)의 일사량분석(日射量分析))

  • Park, Jae-Bok;Koh, Hak-Kyun
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.22-32
    • /
    • 1986
  • This study was carried out to analyze solar radiation in plastic greenhouse which is covered with polyethylene or polyvinyl chrolide film. A computer model for solar radiation analysis in the plastic greenhouse was developed and solar gain factors for E-W and N-S oriented plastic greenhouse in the greenhouse farming area during winter were investigated. Solar gain factors for E-W plastic greenhouse were 60 to 75 percent which were 10 to 15 percent higher than those for N-S plastic greenhouse from November to January. However, the values were apparently decreased in February and reversed in March, showing 3 to 5 percent higher in E-W plastic greenhouse. About 67 to 72 percent of the total solar radiation was attributed to the south-directed wall and roof for the E-W plastic greenhouse and about 30 percent through walls and 60 percent through roofs for the N-S plastic greenhouse.

  • PDF

Greenhouse Heating Characteristics of Heat Pump-Latent Heat Storage System (열펌프-잠열축열 시스템의 온실 난방 특성 연구)

  • 강연구;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.379-384
    • /
    • 2000
  • In order to use the natural thermal energy as much as possible for greenhouse heating, the air-air heat pump system involved PCM(phase change material) latent heat storage system was composed, and three types of greenhouse heating system(greenhouse system, greenhouse-PCM latent heat storage system, greenhouse-PCM latent heat storage-heat pump system) were recomposed from the greenhouse heating units to analyze the heating characteristics. The results could be concluded as follows; 1) In the greenhouse heated by the heat pump under the solar radiation of 406.39W/$m^2$, the maximum PCM temperature in the latent heat storage system was 24$^{\circ}C$ and the accumulated thermal energy stored in PCM mass of 816kg during the daytime was 100,320kJ. In the greenhouse without heat pump under the maximum solar radiation of 452.83W/$m^2$, the maximum PCM temperature in the latent heat storage system was 22$^{\circ}C$ and the accumulated thermal energy stored during the daytime was 52.250kJ. 2) In the greenhouse-PCM system without heat pump the heat stored in soil layers from the surface to 30cm of the soil depth was 450㎉/$m^2$. 3) In all of the greenhouse heating systems, the difference between the air temperature in greenhouse and the ambient temperature was about 20~23$^{\circ}C$ in the daytime. In the greenhouse without heat pump and PCM latent heat storage system the difference between the ambient temperature and the air temperature in the greenhouse was about 6~7$^{\circ}C$ in the nighttime, in the greenhouse with only PCM latent heat storage system the temperature difference about 7~13$^{\circ}C$ in the nighttime and in the greenhouse with the heat pump and PCM latent heat storage system about 9~14$^{\circ}C$ in the nighttime.

  • PDF

Characteristics of PPF Transmittance and Heat Flow by Double Covering Methods of Plastic Film in Tomato Greenhouse (토마토재배용 플라스틱온실의 이중피복방법에 따른 광합성유효광량자속 투과 및 열관류 특성)

  • Lee, H.W.;Sim, S.Y.;Kim, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.11-18
    • /
    • 2010
  • This study was conducted to provide design data for deciding covering method in double layers greenhouse. The variation of photosynthetic photon flux (PPF) and heat flow in air inflated and conventional double layers greenhouse was analyzed. The PPF of air inflated double covering greenhouse was less than that of conventional greenhouse during summer season because the more PPF comes into conventional greenhouse through roof vent which was rolled up for ventilation. The air inflated double layers covering greenhouse was superior to conventional type in the aspect of controlling inside temperature down owing to lower irradiation. The PPF of air inflated greenhouse was greater than that of conventional greenhouse during winter season because the transmittance of conventional greenhouse decreased by dust collected on inside plastic film nearly closed for insulation. Considering the PPF not sufficient for tomato growing in winter, the air inflated double covering system with the greater transmittance was better than conventional covering system. When the inside air of air inflated greenhouse was injected into space between the double layers of covering, the PPF of air inflated greenhouse was much less than the conventional greenhouse because the transmittance of air inflated double covering decreased due to condensation of highly humidified inside air. It was concluded that the more dried outside air should be used for inflating double layers covering. The heat insulation performance of air inflated double covering system was superior to conventional double covering system when comparing the overall heat transfer coefficients for each covering method. However the differences among the overall heat transfer coefficients depending on difference between inside and outside temperatures of greenhouse were great, it is necessary to conduct additional experiment for investigating the overall heat transfer coefficient to design the double layers covering.

Implementation of Ubiquitous Greenhouse Management System Using Sensor Network (센서 네트워크를 활용한 유비쿼터스 온실관리시스템 구현)

  • Seo, Jong-Seong;Kang, Min-Su;Kim, Young-Gon;Sim, Chun-Bo;Joo, Su-Chong;Shin, Chang-Sun
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.129-139
    • /
    • 2008
  • This paper proposes a Ubiquitous Greenhouse Management System (UGMS) based on USN(Ubiquitous Sensor Network) which can be real-time monitoring and controlling of greenhouse's facilities by collecting environment and soil information with environment and soil sensors, and CCTV camera. The existing systems were controlled simply by temperature. Also, it was possible to monitor only at control room in a greenhouse. For solving problems of the exiting system, our system can remotely monitor and control greenhouse by considering environment information. The detail components are as follows. The system includes the sensor manager and the CCTV manager to gather and manage greenhouse information with soil and the environment sensors, and camera. Also the system has the greenhouse database storing greenhouse information and the greenhouse server transmitting greenhouse information to the GUI and controlling greenhouse. Finally, the GUI showing greenhouse condition to users exists in our system. To verify the executability of the UGMS, after developing the greenhouse model, we confirmed that our system could monitor and control the greenhouse condition at remote GUI by applying the UGMS's components to the model.

  • PDF

The Study on Characteristic of Vehicle Greenhouse Gas Emission Applying Real Road Driving (실도로 주행을 반영한 자동차 온실가스 배출 특성 연구)

  • Lee, Jung-Ki;Yong, Geejoong;Kim, Cha-Ryung;Eom, Seong-Bok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.3
    • /
    • pp.45-54
    • /
    • 2018
  • Greenhouse gas is the big issue of the whole world. So foreign countries, EU, USA, Japan, China and Korea made the policy for reducing greenhouse gas. For calculation of reduction, it is necessary to know the quantity of current greenhouse emission per year in Korea. It is not reflected real driving condition for measuring the Fuel economy and greenhouse gas. The subject of this study is to figure out the characteristics which influence on greenhouse gas in real driving condition. And final goal is applying the policy greenhouse emission reduction.

Inside Environment Variation of Solar-Heated Greenhouse with Rock Bed Storage in Summer Season (여름철 자갈축열 태양열 온실의 내부환경 변화(농업시설))

  • 이석건;이종원;이현우;김길동
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • /
    • pp.308-314
    • /
    • 2000
  • Objects of this study were to find the cooling effect of solar-heated greenhouse with rock bed storage in summer season and to suggest operation method of cooling energy saving in summer cropping greenhouse. Experiments were performed to analyze inside environment variation of solar-heated greenhouse. When we took account of different shading and ground conditions of greenhouse, we could conclude that inside average daytime temperature of the solar-heated greenhouse was 2.0∼2.4$^{\circ}C$ lower than the general greenhouse in summer season.

  • PDF

Estimation of Greenhouse Heating performance for Ground Filtration Water Source Heat Pump (강변여과수 열원 히트펌프 온실난방 성능시험)

  • Moon, Jongpil;Lee, Sunghyoun;Kwon, Jinkyung;Kang, YounKoo;Lee, Sujang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.200.2-200.2
    • /
    • 2011
  • This study was carried out in order to estimate the greenhouse performance for Ground filtration water source heat pump which was installed for supplying the heat to the paprika greenhouse in Jinju city. Experimental area of Greenhouse was $3,300m^2$, For keeping the heat from greenhouse, single plastic covering and double thermal screen was installed. With considering all of greenhouse insulation condition and designed heatng temperature, heating capacity for experimental greenhouse was calculated as 320,000kcal/hr. Coefficient of performance(COP) of Ground filtration water source heat pump was gauged and greenhouse heating performance was tested from Febuary 1 to Febuary 28 in 2011. The result showed that COP of heat pump was in the range of 3.7~4.7 and COP of heating system was in the range of 3.0~3.5. The vaule of COP was very high and the temperature inside greenhouse was well corresponded to the setting temperature of greenhouse environment controlling system. lots of Ground filtration water made the the number of well fewer and the expense for installing heating system cheaper than that of geothermal system used custmarily. and this system went beyond the limitation of intaking amount of groundwater in normal Groundwater source heat pump.

  • PDF

Development and Performance Evaluation of a Web-based Management System for Greenhouse Teleoperation (시설재배를 위한 웹 기반의 원격 관리 시스템의 개발 및 성능평가)

  • 심주현;백운재;박주현;이석규
    • Journal of Biosystems Engineering
    • /
    • v.29 no.2
    • /
    • pp.159-166
    • /
    • 2004
  • In this study, we have developed a web-based management system for greenhouse teleoperation. The remote control system consisted of a database, a web-server, a controller in greenhouse, and clients. The database in the server stored user's information and greenhouse conditions was used to manage user's login and conditioning data. The management system developed by using Java applet, which was a client program for effective and easy management of greenhouse, monitored the greenhouse in real time. Master and driver boards were installed in the greenhouse control unit. Database on flowering to collect and analyze data exchanged data with the server. The master board could be managed effectively by timer routine, repeat control within setting time, and algorithm of setting points. Also, the greenhouse conditions could be controlled by manual or remote controller(PC) through a web browser in internet. Furthermore, all of the control devices of the greenhouse were managed by remote control of using PC and checked via camera installed in greenhouse. Finally, we showed the experimental results of the system which was installed in Pusan Horticultural Experiment Station.