• Title/Summary/Keyword: gradient and inverse distance squared

Search Result 1, Processing Time 0.028 seconds

Implementation of Spatial Downscaling Method Based on Gradient and Inverse Distance Squared (GIDS) for High-Resolution Numerical Weather Prediction Data (고해상도 수치예측자료 생산을 위한 경도-역거리 제곱법(GIDS) 기반의 공간 규모 상세화 기법 활용)

  • Yang, Ah-Ryeon;Oh, Su-Bin;Kim, Joowan;Lee, Seung-Woo;Kim, Chun-Ji;Park, Soohyun
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • In this study, we examined a spatial downscaling method based on Gradient and Inverse Distance Squared (GIDS) weighting to produce high-resolution grid data from a numerical weather prediction model over Korean Peninsula with complex terrain. The GIDS is a simple and effective geostatistical downscaling method using horizontal distance gradients and an elevation. The predicted meteorological variables (e.g., temperature and 3-hr accumulated rainfall amount) from the Limited-area ENsemble prediction System (LENS; horizontal grid spacing of 3 km) are used for the GIDS to produce a higher horizontal resolution (1.5 km) data set. The obtained results were compared to those from the bilinear interpolation. The GIDS effectively produced high-resolution gridded data for temperature with the continuous spatial distribution and high dependence on topography. The results showed a better agreement with the observation by increasing a searching radius from 10 to 30 km. However, the GIDS showed relatively lower performance for the precipitation variable. Although the GIDS has a significant efficiency in producing a higher resolution gridded temperature data, it requires further study to be applied for rainfall events.