• Title, Summary, Keyword: glycerol

Search Result 1,179, Processing Time 0.188 seconds

Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae

  • Jung, Joon-Young;Yun, Hyun-Shik;Lee, Jin-Won;Oh, Min-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.846-853
    • /
    • 2011
  • Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.

Improvement in Thin-layer Chromatography in a Quantitative Assay of Glycerol in Biodiesel (개선된 thin-layer chromatography를 이용한 바이오디젤 중의 글리세롤 정량분석)

  • Lee, Sang-Eun;Choi, Woo-Seok;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.537-541
    • /
    • 2013
  • We analyzed glycerol using thin-layer chromatography (TLC) and compared the separation resolution of some mobile phases. When acetonitrile:distilled water (85:15 v/v) was used as a mobile phase, the band of glycerol on the TLC was more distinctly and rapidly separated. Using TLC analysis, we prepared a calibration curve for the glycerol concentration vs. the area of the glycerol band in which the glycerol concentration of the x-axis was converted into a log-scale ranging from 3.0 to 0.0625 (%, w/v). Based on this calibration curve, the residual glycerol concentration (0.2 [%, w/v]) in biodiesel was determined successfully using TLC analysis. When the results of the TLC analysis were compared with those of a chemical and enzymatic assay, the results were fairly similar. We conclude that TLC without additional analytical instruments can be used as an alternative method for the quantitative analysis of the concentration of glycerol in biodiesel.

The Effects of Glycerol Aftertreatment for Low-Formaldehyde Finishing (Glycerol 후처리에 의한 Free-formaldehyde 발생 억제 효과)

  • Choi Suk-Chul;Kim Ho-Jung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.2
    • /
    • pp.59-67
    • /
    • 1986
  • To control the amounts of formaldehyde released from the cotton fabric finished with N-methylol compounds, glycerol was used as a formaldehyde-scavenging agent. It was observed the effects of catalysts and curing conditions when aftertreated with glycerol on melamine resin finished fabric. The effects of Different processes of glycerol treatment, and different resins, urea resin and melamine resin, were compared. The conclusions obtained from the results are as follows: 1) It was shown hatt the aftertreatment with glycerol (treated without catalyst) was more effective than treated with catalysts in controlling free formaldehyde. 2) The optimum curing temperature and curing time for the glycerol aftertreatment without adversely affecting the other properties of fabric was about $160^{\circ}C$, 3 min. 3) According to the increase of glycerol concentration in both aftertreatment and simultaneous treatment the amounts of free formaldehyde was reduced. The rate of decrease was manifest within the limits of $6\%$ in the case of simultaneous treatment with glycerol ana resins, and $3\%$ in the case of glycerol aftertreatment on resin finished fabrics. 4) Dry wrinkle recovery angle was decreased the increase of glycerol concentration. Melamine resin had a little adverse effect than urea resin, particulary glycerol aftertreatment. 5) The breaking strength was increased with the increase of glycerol concentration.

  • PDF

Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel (말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성)

  • Lee, Mi-Hwa;Lee, Young-Chul;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

Effects of Squalene on The Epidermal Growth Factor (EGF) Expression and Histological Changes by Glycerol-Induced Acute Renal Failure in Mice (Glycerol-유도 급성신부전에서 표피성장인자 발현 및 조직학적 변화에 관한 스쿠알렌의 효과)

  • Choi, Young-Bok;Kim, Young-Ho;Lee, Jun-Heung;Kim, Jong-Se
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.241-254
    • /
    • 2004
  • Kidney had recovery functions against toxicants, ischemia, reperfusion-induced damage, acute-renal failure (ARF). Urinary epidermal growth factor (EGF) is produced by the juxtaglomerular apparatus. Kidney accumulates or excretes the EGF. In case of renal diseases, excreted EGF was decreased. The aim of this study is to evaluate the effects squalene (SQ) on the prevention of experimental acute renal failure induced by glycerol. In case of in vitro study, we investigated the expression of EGF by RT-PCR. After the proximal tubular cells was isolated, glycerol (1, 2, 4 mM) or glycerol plus squalene (0.1, 0.05 or 0.1%) was added. In case of in vivo study, we investigated the changes of BUN, creatine, and ultrastructure. Experimental groups were divided into four groups. Group 1 was normal mouse. Group 2 was injected with SQ only (180 mg/kg). Group 3 was not treated with squalene after intraperitoneal contamination of glycerol (50%, 8 ml/kg). And, Group 4 was treated with squalene (180 mg/kg) after intraperitoneal contamination of glycerol (50%, 8 ml/kg). All groups were used to 7 mice. In the results, we investigated the glycerol induced renal failure. The expression of EGF mRNA was decreased in renal proximal tubules when treated with only glycerol. SQ increased the mRNA expression of EGF in renal proximal tubules. SQ also quickly recovered the levels of BUN and creatine compared with those of mice treated with only glycerol (P<0.01). In case of ultrastructure, group 3 had heavily damaged mitochondria, but, mitochondria in group 4 had evidences of the recovery. It was concluded that SQ had the recovery effects for the glycerol-induced acute renal failure.

Evaluation of glycerol encapsulated with alginate and alginate-chitosan polymers in gut environment and its resistance to rumen microbial degradation

  • Gawad, Ramadan;Fellner, Vivek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.72-81
    • /
    • 2019
  • Objective: To determine the effect of gut pH and rumen microbial fermentation on glycerol encapsulated in alginate and alginate-chitosan polymers. Methods: Glycerol was encapsulated at 2.5%, 5%, 7.5%, or 10% (w/w) with sodium alginate (A) and alginate-chitosan (AC) polymers. Surface morphology and chemical modifications of the beads were evaluated using scanning electron microscopy and Fourier transform infrared (FTIR) spectra. Encapsulation efficiency was determined at the 5% glycerol inclusion level in two experiments. In experiment 1, 0.5 g of alginate-glycerol (AG) and alginate-chitosan glycerol (ACG) beads were incubated for 2 h at $39^{\circ}C$ in pH 2 buffer followed by 24 h in pH 8 buffer to simulate gastric and intestinal conditions, respectively. In experiment 2, 0.5 g of AG and ACG beads were incubated in pH 6 buffer at $39^{\circ}C$ for 8 h to simulate rumen conditions. All incubations were replicated four times. Free glycerol content was determined using a spectrophotometer and used to assess loading capacity and encapsulation efficiency. An in vitro experiment with mixed cultures of rumen microbes was conducted to determine effect of encapsulation on microbial fermentation. Data were analyzed according to a complete block design using the MIXED procedure of SAS (SAS Institute, Cary, NC, USA). Results: For AG and ACG, loading capacity and efficiency were 64.7%, 74.7%, 70.3%, and 78.1%, respectively. Based on the FTIR spectra and scanning electron microscopy, ACG treatment demonstrated more intense and stronger ionic bonds. At pH 6, 36.1% and 29.7% of glycerol was released from AG and ACG, respectively. At pH 2 minimal glycerol was released but pH 8 resulted in 95.7% and 93.9% of glycerol released from AG and ACG, respectively. In vitro microbial data show reduced (p<0.05) fermentation of encapsulated glycerol after 24 h of incubation. Conclusion: The AC polymer provided greater protection in acidic pH with a gradual release of intact glycerol when exposed to an alkaline pH.

Effects of Indirect Moxibustion on Skeletal Muscles in Mouse Model of Skeletal Muscle Adiposity (간접구 시술이 골격근 Adiposity 유발 쥐의 근육조직에 미치는 영향)

  • Lee, Ki Su;Hong, Kwon Eui
    • Journal of Acupuncture Research
    • /
    • v.31 no.1
    • /
    • pp.7-21
    • /
    • 2014
  • Objectives : To observe the regenerative effects of indirect moxibustion, a traditional Korean medical treatment on skeletal muscles using mouse model of skeletal muscle adiposity. Methods : Twenty seven ICR male mice were randomly assigned into Intact control(n=3), glycerol treatment together without moxibustion(n=12), and glycerol treatment together with moxibustion (n=12) groups. Mice of glycerol treatment groups were injected with 50 ${\mu}l$ DW(distilled water) containing 50 % of glycerol into the two tibialis anterior. After injection, moxibustion was applied at 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) acupoints three times per each session, every days for twelve days(total 12 treatments). Phospho-Erk1/2, Myostatin protein levels were analyzed by western blotting and immunofluo-rescence staining techniques for tissues of the tibialis anterior muscle. Smad, phospho-Smad were analyzed by immunofluorescence staining. Results : 1. Histological analysis of sections from injected TA muscles showed that glycerol induced rapidly muscle necrosis, with a maximum at day 3. 6 days and 9 days after injection, muscle was regenerating. 2. According to western blotting and immunofluorescence staining, phospho-Erk1/2 protein signals in glycerol treatment with moxibustion group were stronger compared to Intact and glycerol treatment without moxibustion group. 3. According to western blotting and immunofluorescence staining, myostatin protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 4. According to immunofluorescence staining, Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 5. According to immunofluorescence staining, phospho-Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. Conclusions : These results confirm that indirect moxibustion of 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) influences muscle regeneration in mouse models of skeletal muscle adiposity. Further discussion, and the establishment of moxibustion mechanism will prompt clinical application of moxibustion.

Synthetic Studies on Phospholipid Derivatives 1. Comparative Syntheses of (R)-and (S)-Glycerol Acetonide (Phospholipid 유도체에 관한 연구 1. (R)-과 (S)-Glycerol acetonide의 효과적인 비교합성)

  • Sung Ki Chung;B. E. Kim;K. S. Chang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.253-257
    • /
    • 1991
  • The optically active glycerol acetonides are often used as important chiral intermediates for many syntheses. In connection with the development of inhibitors of phospholipases, we have compared the synthetic routes to (S)-and (R)-glycerol acetonide from D-mannitol and D-isoascorbic acid, and L-serine and L-ascorbic acid, respectively. In our hands, the conversions of L-serine to (R)-glycerol acetonide and of D-mannitol to (S)-glycerol acetonide were found to be most effective.

  • PDF

Chemical Synthesis of Conjugated Linoleic Acid (CLA) Derivatives with Glycerol (Conjugated Linoleic Acid (CLA) Glycerol 유도체의 화학적 합성)

  • 박원석;김석종;박숙자;김정옥;임동길;하영래
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.3
    • /
    • pp.389-394
    • /
    • 2000
  • CLA의 glycerol 유도체를 화학적으로 합성하였다. CLA-Cl(1.79 mmole), glycerol(0.6 mmole)과 pyridine (1.3mL)를 25C에서 8시간 반응시켰다. 이 반응물을 SGCC와 TLC를 이용하여 CLA의 glycerol 유도체를 분리하고 1H-NMR, 13C-NMR, IR, MS를 이용하여 분리된 유도체를 동정하였다. 이 실험조건하에서 사용된 CLA의 59.4%가 CLA의 glycerol 유도체(CLA-TG, CLA-DG, CLA-MG)로 전환되었다. CLA의 glycerol 유도체 중 CLA-TG는 52.1%, CLA-DG는 17.0%, CLA-MG는 30.9%였다.

  • PDF

Effects of Glycerol on the Oxygen Free Radical Reactions and Renal Functions in the Renal Cortex of Rats (Glycerol이 흰쥐 신피질에서의 산소유리기반응과 신기능에 미치는 영향)

  • 고현철;신인철
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.260-265
    • /
    • 1995
  • In an attempt to define the early biochemical determinants that participate in the pathogenesis of glycerol-induced nephrotoxicity, especially focusing on oxygen free radicals, we studied malondialdehyde (MDA) level and the activities of catalase and superoxide dismutase in the renal cortex of rats, and the concentrations of blood urea nitrogen(BUH) and serum creatinine of rats at 24hr after the injection of a 50% solution of glycerol. Sprague-Dawley albino rats weighing 240 to 260 mg were injected intramuscularly with a 50% solution of glycerol(2 mι/kg, 4 mι/kg and 8 mι/kg). The group treated with glycerol showed significantlv higher MDA level and catalase activity, lower SOD activity and higher BUN and serum creatinine concentrations at 24 hr after the injection as compared to those of control group. These results suggest that the excessive oxygen free radicals resulting from the depression of SOD activity is an important determinant in the pathogenesis of glycerol-induced nephrotoxicity.

  • PDF