• Title, Summary, Keyword: genetic polymorphism

Search Result 1,588, Processing Time 0.05 seconds

Association of the XRCC1 c.1178G>A Genetic Polymorphism with Lung Cancer Risk in Chinese

  • Wang, Lei;Lin, Yong;Qi, Cong-Cong;Sheng, Bao-Wei;Fu, Tian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4095-4099
    • /
    • 2014
  • The X-ray repair cross-complementing group 1 protein (XRCC1) plays important roles in the DNA base excision repair pathway which may influence the development of lung cancer. This study aimed to evaluate the potential association of the XRCC1 c.1178G>A genetic polymorphism with lung cancer risk. The created restriction site-polymerase chain reaction (CRS-PCR) and DNA sequencing methods were utilized to evaluate the XRCC1 c.1178G>A genetic polymorphism among 376 lung cancer patients and 379 controls. Associations between the genetic polymorphism and lung cancer risk were determined with an unconditional logistic regression model. Our data suggested that the distribution of allele and genotype in lung cancer patients was significantly different from that of controls. The XRCC1 c.1178G>A genetic polymorphism was associated with an increased risk of lung cancer (AA vs GG: OR=2.91, 95%CI 1.70-4.98, p<0.001; A vs G: OR=1.52, 95%CI 1.22-1.90, p<0.001). The allele A and genotype AA may contribute to risk of lung cancer. These preliminary results suggested that the XRCC1 c.1178G>A genetic polymorphism is statistically associated with lung cancer risk in the Chinese population.

Construction and Expression of Mutant cDNAs Responsible for Genetic Polymorphism in Aldehyde Oxidase in Donryu Strain Rats

  • Adachi, Mayuko;Itoh, Kunio;Masubuchi, Akiko;Watanabe, Nobuaki;Tanaka, Yorihisa
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1021-1027
    • /
    • 2007
  • We demonstrated the genetic polymorphism of aldehyde oxidase (AO) in Donryu strain rats: the ultrarapid metabolizer (UM) with nucleotide mutation of (377G, 2604C) coding for amino acid substitution of (110Gly, 852Val), extensive metabolizer (EM) with (377G/A, 2604C/T) coding for (110Gly/Ser, 852Val/Ala), and poor metabolizer (PM) with (377A, 2604T) coding for (110Ser, 852Ala), respectively. The results suggested that 377G > A and/or 2604C > T should be responsible for the genetic polymorphism. In this study, we constructed an E. coli expression system of four types of AO cDNA including Mut-1 with (377G, 2604T) and Mut-2 with (377A, 2604C) as well as naturally existing nucleotide sequences of UM and PM in order to clarify which one is responsible for the polymorphism. Mut-1 and Mut-2 showed almost the same high and low activity as that of the UM and PM groups, respectively. Thus, the expression study of mutant AO cDNA directly revealed that the nucleotide substitution of 377G > A, but not that of 2604C > T, will play a critical role in the genetic polymorphism of AO in Donryu strain rats. The reason amino acid substitution will cause genetic polymorphism in AO activity was discussed.

Genetic Variations of Eight Candidate Genes in Korean Obese Group

  • Kang, Byung-Youn;Lee, Kang-Oh;Bae, Joon-Seol;Kim, Ki-Tae;Yoon, Moon-Young;Lim, Seok-Rhin;Seo, Sang-Beom;Shin, Jung-Hee;Lee, Chung-Choo
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • Obesity is a complex metabolic disorder with a strong genetic component. There are many candidate genes for obesity and its related phenotypes. We studied genetic variations between Korean obese and lean groups. Polymorphisms investigated were the Msp I polymorphism of the $\alpha$$_{2A}$-adrenergic receptor ($\alpha$$_{2A}$-AR) gene, the Mnl I polymorphism of the $\alpha$$_2$-adrenergic receptor ($\alpha$$_2$-AR) gene, the BstO I polymorphism of the $\beta$$_3$-adrenergic receptor ($\beta$$_3$-AR) gene, the Pml I polymorphism of the lamin A/C (LMNA) gene, the Hga I polymorphism of the clearance receptor (NPRC) gene, the Msp I polymorphism of the leptin gene, BclI polymorphism of the uncoupling protein 1 (UCPI) gene and the Hha I polymorphism of the fatty acid binding protein 2 (FABP2) gene. Among these genetic markers, Pml I polymorphism at the LMNA gene and Bcl I polymorphism at the UCP1 gene were significantly associated with obesity. However, further studies are required whether thease findings are reproduced in large population, although two polymorphisms might be useful as genetic markers in the ethiology of obesity in Korean population.ion.

  • PDF

Association Between Genetic Polymorphism of XRCC1 Gene and Risk of Glioma in а Chinese Population

  • Wang, Ying-Xin;Fan, Kai;Tao, Ding-Bo;Dong, Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5957-5960
    • /
    • 2013
  • Background: Gliomas are the most common type of primary brain tumor in adults, and the X-ray repair complementing group 1 gene (XRCC1) is an important candidate gene influencing its risk. The objective of this study was to detect the influence of XRCC1 genetic polymorphisms on glioma risk. Materials and Methods: A total of 629 glioma patients and 641 cancer-free subjects were enrolled in this case-control study. The genotypes of the c.1471G>A genetic polymorphism were determined by created restriction site-polymerase chain reaction (CRS-PCR) and DNA sequencing methods. The influence of the XRCC1 genetic polymorphism on glioma risk was evaluated by association analysis. Results: Our data indicated that the alleles/genotype of this genetic variant was statistically associated with glioma risk. The AA genotype was statistically associated with the increased risk of glioma compared to the GG wild genotype (odds ratios (OR) = 1.89, 95% CI 1.25-2.87, P = 0.003). The allele-A may contribute to increased the susceptibility to glioma (OR = 1.23, 95% CI 1.04-1.46, P = 0.017). Conclusions: These preliminary findings indicate that the c.1471G>A genetic polymorphism of XRCC1 has the potential to influence glioma susceptibility, and might be used as molecular marker for assessing glioma risk.

Genetic Variation in Exon 3 of Human Apo B mRNA Editing Protein (apobec-1) Gene

  • Hong, Seung-Ho;Song, Jung-Han;Kim, Jin-Q
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1999
  • We have investigated the genetic variation in the human apo B mRNA editing protein (apobec-1) gene. Exon 3 of the apobec-1 gene was amplified by polymerase chain reaction. After detection of an additional band by single strand conformational polymorphism (SSCP) analysis, sequencing of the SSCP-shift sample revealed a single-base mutation. The mutation was a CGG transversion at codon 80 resulting in a lleRMet substitution. This substitution was confirmed by restriction fragment length polymorphism analysis since a Pvull site is abolished by the substitution. Population and family studies confirmed that the inheritance of the genotypes for apobec-1 gene polymorphism is controlled by two codominant alleles (P1 and P2). A significant difference in plasma triglyceride was detected among the different apobec-1 genotypes in the CAD patients (P<0.05). Our study could provide the basis for elucidating the interaction between genetic variation of the apobec-1 gene and disorders related to lipid metabolism.

  • PDF

Genetic association study of single nucleotide polymorphism in dentistry (단일염기다형성을 이용한 치과 질환 유전체 연구)

  • Kim, Jee-Hwan;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.341-345
    • /
    • 2011
  • Genetic association study has been progressed in medicine along with advance in genetic technology. It focused on the individual differences in genotype due to errors occurring during DNA duplication, which can cause vulnerability to specific diseases. Polymorphism defines the varieties in phenotype due to those genetic variations. Polymorphism due to change in one DNA base sequence is called as a Single Nucleotide Polymorphism. In the near future, the evaluation of relative risk to specific disease according to SNP will be essential part of fundamental of medicine for the diagnosis, treatment and prevention. Dental caries and periodontal diseases has been first subject to genetic association study in dentistry and broaden out to other areas like bone formation and resorption. This article presents the current state of genetic association study and its application to dentistry.

Genetic Polymorphism of CCK Promotor Region and Sasang Constitution (사상체질의 Cholecystokinin 유전자 단일염기다형성 연구)

  • Lee Soo-Kyung;Lee Seong-Gene
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.105-110
    • /
    • 2004
  • Objectives : Sasang Constitutional Medicine is based on the diversity of human beings and medically developing a variation of responses to diseases and medicines. This diversity is categorized into four concerning morphology, physiology, pathology, and pharmacology. It is supposed that sasang constitutional medicine is related the genetic diversity of individuals. Single nucleotide polymorphism is the basic tool to research genetic polymorphism as a landmark of genomes. Each constitution has different processes of pathophysiology and metabolisms to herb medications. In clinical research, the stroke incidence is significantly different by constitution. Methods : We researched whether the polymorphic expression of CCK (rs=2241997) depends on sasang constitution. The [c/t] polymorphism site of promotor region of CCK gene on 3p22-p21.3 was investigated. Results : The allele frequency of [c/t] polymorphism of CCK promotor region was different in constitution groups compared to the average allele frequency of SNP DB. The allele frequencies of Soeumin and Soyangin groups were (c:0.70/t:0.30). and (c:0.71/t:0.29), that of Taeumin group was (c:0.57/t:0.43) and of Taeyangin group was (c:1.00/t:0.00) Conclusions : It was regarded the [c/t] polymorphism of CCK promotor region is available to classify the constitution. However, it is necessary to research about CCK gene polymorphism and more constitution population groups. It is also necessary to research the more functional gene's polymorphism and sasang constitution.

  • PDF

Diversity and Inheritance of AFLP Markers in Wild and Cultivated Soybeans (AFLP marker를 이용한 콩의 유전적 다양성과 유전분리 분석)

  • 김용호;윤홍태
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.265-271
    • /
    • 2004
  • Genetic variation is the basis of crop improvement. Limited genetic diversity in a crop species may restrict the amount of genetic improvement that can be achieved through plant breeding. Soybean is one of the world's most important crops. A potential source of genetic variability for the cultivated soybean is the wild species G. soja Sieb. &amp; Zucc. Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique, which can detect a 10-fold greater nubmer of loci than other DNA marker analysis. Twenty cultivated soybeans and two-hundred wild soybeans were used to determine genetic vatiations by AFLPs and evaluate the usefulness of AFLPs as DNA markers. Six-hundred and ten fragments were detected with an average of 56 AFLP fragments produced per primer in a total of 11 AFLP primer pairs. The number of polymorphic loci detected per primer ranged from 7 to 20 and the polymorphism was greater in wild than in cultivated soybean. F$_2$ segregation analysis of four AFLP fragments in combination of Hwaeomputkong ${\times}$ PI 417479 indicated that they segregate as stable Mendelian loci with 3 : 1. This results strongly suggest that the AFLP analysis is a good technique for the detection of genetic polymorphism in a wide plant species.

No Association between Genetic Polymorphism of Tryptophan Hydroxylase A218C and Serotonin Transporter Linked Polymorphic Region and Panic Disorder (한국인 공황장애 환자의 트립토판 가수분해 효소와 세로토닌 전달체 유전자 다형성)

  • Choi, Young Hee;Woo, Jong Min;Park, Hun Ku;Yoon, Kyung Sik;Cho, Dae Yeon;Lee, Min Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.11 no.2
    • /
    • pp.136-145
    • /
    • 2004
  • Objectives:Genetic variations of the tryptophan hydroxylase(TPH) gene and the serotonin transporter linked polymorphic region(5-HTTLPR) polymorphism have been associated with its functional capacity. The authors investigated whether the allelic constitution of the TPH gene and 5-HTTLPR are associated in Korean panic patients. Methods:244 Korean patients with panic disorder and 227 normal healthy controls were tested for a genetic polymorphism of TPH A218C and 5-HTTLPR polymorphism. To assess the severity of panic disorder during the last one month, anticipatory anxiety, panic difficulty, panic distress, agoraphobic difficulty and agoraphobic distress were measured with visual analogue scale(VAS) score, STAI-S & T, BDI, SCL-90-R, ASI-R, CGI, PDSS, and HAMD. Results:There was no significant difference in genotype and allele frequencies of TPH A218C and 5-HTTLPR polymorphism between panic patients and controls. Although we observed some differences in genotype and allele frequencies of TPH A218C polymorphism among male subjects, these differences disappeared after Bonferroni correction. And there were no significant differences in clinical variables. Conclusion:Our results suggested that there are no association between the genetic polymorphism of TPH gene and 5-HTTLPR with panic disorder.

  • PDF

Microsatellite Polymorphism and Genetic Relationship in Dog Breeds in Korea

  • Cho, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1071-1074
    • /
    • 2005
  • Microsatellite polymorphism and their genetic relationships were estimated using genotype information of 183 dogs from 11 microsatellite loci. The breeds include the indigenous Korean breeds Jindo dog (30), Poongsan dog (20) and Miryang dog (44) together with Chihauhau dog (31) and German Shepherd dog (58). Jindo dogs showed the highest expected heterozygosity (0.796${\pm}$0.030) and polymorphic information contents (0.755) in all populations. The phylogenetic analysis showed the existence of two distinct clusters supported by high bootstrap values: the Korean native dogs and other dogs. They clearly show that Poongsan dog and Miryang dog are closely related to each other when compared with Jindo dog. Microsatellite polymorphism data was shown to be useful for estimating the genetic relationship between Korean native dogs and other dog breeds, and also can be applied for parentage testing in those dog breeds.