• Title, Summary, Keyword: full scale measurements

Search Result 135, Processing Time 0.048 seconds

A comparative investigation of the TTU pressure envelope -Numerical versus laboratory and full scale results

  • Bekele, S.A.;Hangan, H.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.337-346
    • /
    • 2002
  • Wind tunnel pressure measurements and numerical simulations based on the Reynolds Stress Model (RSM) are compared with full and model scale data in the flow area of impingement, separation and wake for $60^{\circ}$ and $90^{\circ}$ wind azimuth angles. The phase averaged fluctuating pressures simulated by the RSM model are combined with modelling of the small scale, random pressure field to produce the total, instantaneous pressures. Time averaged, rsm and peak pressure coefficients are consequently calculated. This numerical approach predicts slightly better the pressure field on the roof of the TTU (Texas Tech University) building when compared to the wind tunnel experimental results. However, it shows a deviation from both experimental data sets in the impingement and wake regions. The limitations of the RSM model in resolving the intermittent flow field associated with the corner vortex formation are discussed. Also, correlations between the largest roof suctions and the corner vortex "switching phenomena" are observed. It is inferred that the intermittency and short duration of this vortex switching might be related to both the wind tunnel and numerical simulation under-prediction of the peak roof suctions for oblique wind directions.

A study on the system identification technique for hydrodynamic coefficient estimation of underwater submersible (수중운동체의 유체계수 추정을 위한 시스템 식별기법 연구)

  • 양승윤;최중락;김흥렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.772-775
    • /
    • 1992
  • It is necessary to estimate hydrodynamic coefficients to design the auto-pilot system and motion simulator of submersible vehicle. In this paper, an algorithm was designed to estimate hydrodynamic coefficients of submersible vehicle. Using this algorithm, the hydrodynamic coefficients were estimated from measurements of full scale trial. The estimated hydrodynamic coefficients were used for the design of an auto-depth controller(ADC) of submersible vehicle, and the resulting ADC are proved to have a better performance than the previous one.

  • PDF

A Study on the Simulation of the Ship in Level Ice (평탄방에서 선박의 모의실험에 관한 연구)

  • 박명규;고상용
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.23-31
    • /
    • 1994
  • A theoretical scaling was made in order to acquire the ice resistance of ships in level ice. Ice resistance of ice-breaker Ermak was calculated by Kashteljan eequation and it's model test results were compared with full-scale measurements. Atkins's ice number and Norman Jones's dimensionless numbers were investigated and discussed.

  • PDF

A Study on the Model Test for the Twin Propeller Cavitation Noise (쌍축선 추진기 캐비테이션 소음 모형시험 연구)

  • Park, Cheolsoo;Kim, Gun-Do;Yim, Geun-Tae;Park, Young-Ha;Jang, Hyun-Gil;Jang, Young Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • The experimental results of the model tests for the twin propeller cavitation noise are presented. The model test was carried out by means of procedure of noise measurement followed by the signal processing and full-scale extrapolation. In order to convert the measured sound pressure level into the sound source level, transfer function measurements for three conditions were performed according to the combination of locations and number of virtual sources. White noise and LFM signal were used as a source signals to examine the influence of the input signal. For the twin propellers, 5 transfer functions were defined and the results were discussed. Cavitation noise measurement tests were performed similarly to the transfer function measurement test. Noise source localization analysis was performed to confirm the test effectiveness. It was confirmed that the source level of the twin propeller can be estimated reliably by using transfer function corrections. Finally, the model test results were converted into full-scale by applying the ITTC '87 model-ship scaling raw, and the validity of the model test was confirmed by comparison with the full-scale measurement result.

Assessment of whipping and springing on a large container vessel

  • Barhoumi, Mondher;Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.442-458
    • /
    • 2014
  • Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.

Using neural networks to model and predict amplitude dependent damping in buildings

  • Li, Q.S.;Liu, D.K.;Fang, J.Q.;Jeary, A.P.;Wong, C.K.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.25-40
    • /
    • 1999
  • In this paper, artificial neural networks, a new kind of intelligent method, are employed to model and predict amplitude dependent damping in buildings based on our full-scale measurements of buildings. The modelling method and procedure using neural networks to model the damping are studied. Comparative analysis of different neural network models of damping, which includes multi-layer perception network (MLP), recurrent neural network, and general regression neural network (GRNN), is performed and discussed in detail. The performances of the models are evaluated and discussed by tests and predictions including self-test, "one-lag" prediction and "multi-lag" prediction of the damping values at high amplitude levels. The established models of damping are used to predict the damping in the following three ways : (1) the model is established by part of the data measured from one building and is used to predict the another part of damping values which are always difficult to obtain from field measurements : the values at the high amplitude level. (2) The model is established by the damping data measured from one building and is used to predict the variation curve of damping for another building. And (3) the model is established by the data measured from more than one buildings and is used to predict the variation curve of damping for another building. The prediction results are discussed.

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements (실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석)

  • Lee, Deok Keun;Kong, Min Joon;You, Dong Woo
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.36 no.3
    • /
    • pp.349-359
    • /
    • 2016
  • In order to analytically evaluate buffeting responses, the analysis of wind characteristics such as turbulence intensity, turbulence length, gust, roughness coefficient, etc must be a priority. Static aerodynamic force coefficients, flutter coefficients, structural damping ratios, aerodynamic damping ratios and natural frequencies affect the analytical responses. The bridge interested in this paper has being been used for 32 years. As the time passes, current terrain conditions around the bridge are different markedly from the conditions it was built 32 years ago. Also, wind environments were considerably varied by the climate change. For this reason, it is necessary to evaluate the turbulence intensity, length, spectrum and roughness coefficient of the bridge site from full-scale measurements using the structural health monitoring system. The evaluation results indicate that wind characteristics of bridge site is analogous to that of open terrain although the bridge is located on the coastal area. To calculate buffeting responses, the analysis variables such as damping ratios, static aerodynamic force coefficients and natural frequency were evaluated from measured data. The analysis was performed with regard to 4 cases. The evaluated variables from measured data are applied to the first and second analysis cases. And the other analysis cases were performed based on Design Guidelines for Steel Cable Supported Bridges. The calculated responses of each analysis cases are compared with the buffeting response measured at less than 25m/s wind speed. It is verified that the responses by the numerical analysis applying the estimated variables based on full-scale measurements are well agreed with the measured actual buffeting responses under wind speed 25m/s. Also, the extreme wind speed corresponding to a recurrence interval 200 years is derived from Gumbel distribution. The derived wind speed for return period of 200 years is 45m/s. Therefore the buffeting responses at wind speed 45m/s is determined by the analysis applying the estimated variables.

Experimental analysis of aerodynamic stability of stress-ribbon footbridges

  • Pirner, Miros;Fischer, Ondrej
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.95-104
    • /
    • 1999
  • The dynamic properties of one-span or multi-span reinforced concrete footbridges of catenary form (see e.g., Fig. 1) include the very low fundamental natural frequency, usually near the step-frequency of pedestrians, and the low damping of bending vibrations. The paper summarized the results of model as well as full-scale measurements with particular reference to the influence of torsional rigidity of the stress-ribbon on the magnitude of aerodynamic response, the results of measurements on footbridges of catenary form being completed by results obtained on footbridges of some other types. Additionally the influence of the local broadening of the bridge deck on the bridge response was tested. Starting from these results the criterion has been derived for the decision, whether the flutter analysis is necessary for the design of the footbridge.

Structural behaviour under wind loading of a 90 m steel chimney

  • Tranvik, Par;Alpsten, Goran
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.61-78
    • /
    • 2005
  • This paper presents results from an investigation of the structural behaviour of a very slender 90 m high steel chimney erected at V$\ddot{a}$xj$\ddot{o}$ in southern Sweden in 1995. The chimney is equipped with a mechanical friction-type damper at the top. Due to a mistake during erection and installation of the chimney the transport fixings of the damper were not released properly and the chimney developed extensive oscillations in the very first period of service. This caused a great number of fatigue cracks to occur within a few months of service. After the functioning of the damper had been restored and the fatigue cracks were repaired an extensive program was initiated in 1996 to monitor the structural behaviour of the chimney under wind loading. In the investigation data were collected for more than six years of continuous measurements and regular observations of the chimney. The data obtained have some general relevance with respect to wind data, behaviour of a slender structure under wind loading, and the effect of a mechanical damper. Also some theoretical studies were performed as part of the investigation of the chimney.