• Title, Summary, Keyword: flowering time

Search Result 464, Processing Time 0.041 seconds

A New Spray Chrysanthemum Cultivar, 'Golden Festival' with Vigorous Semi-Double Flower of Yellow Petals for Cut Flower

  • Lim, Jin-Hee;Shin, Hak-Ki;Park, Sang Kun;Cho, Hae-Ryong;Rhee, Hye-Kyung;Kim, Mi-Seon;Joung, Hyang Young
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.495-498
    • /
    • 2008
  • A new spray chrysanthemum cultivar, 'Golden Festival' was released by National Horticultural Research Institute (NHRI), Rural Development Administration (RDA), Korea in 2007. It was selected from the progenies of open-pollination of 'Torbay' in 2002. Trials were conducted from 2005 to 2007 for evaluation and selection of this cultivar, including shading culture in summer and retarding culture in autumn. The natural flowering time of 'Golden Festival' is late October, but year-round flowering is possible by shading and lighting treatment. The cultivar is semi-double type flowers with bright yellow petals and green flower center. Flower neck and stem are very hardy. The diameter of flower is 56.5 mm. The number of flowers per stem and petals per flower are 12.0 and 93.5, respectively. The days to flowering under the short day treatment is about 50 in spring season.

A New Spray Chrysanthemum Cultivar, "Cherry Blossom" with Resistant to White Rust, Single Flower Type and Bright Pink Petals for Cut Flower

  • Lim, Jin-Hee;Shin, Hak-Ki;Park, Sang Kun;Cho, Hae-Ryong;Rhee, Hye-Kyung;Kim, Mi-Seon;Joung, Hyang Young
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.439-442
    • /
    • 2008
  • A new spray chrysanthemum cultivar, 'Cherry Blossom' was released by National Horticultural Research Institute (NHRI), Rural Development Administration (RDA), Korea in 2007. A cross was made in 2002 between 'Relance', a spray cultivar with red petals and resistant to white rust and 'Yeonja', a spray cultivar with pink petals. Trials were conducted from 2005 to 2007 for the evaluation and selection of this cultivar, including shading culture in summer and retarding culture in autumn. The natural flowering time of "Cherry Blossom" is late October, but year-round flowering is possible by shading and lighting treatment. This cultivar is single type flowers with dark pink petals and green flower center and resistant to white rust. It is very stable color of petals when the variety is cultivated under high temperature conditions in summer season. The diameter of flower is 55.0 mm. The number of flowers per stem is 10.5 and the number of petals per flower is 24.0. The days to flowering under the short day treatment is about 45 in spring season.

Night Interruption and Night Temperature Regulate Flower Characteristics in Cymbidium

  • Kim, Yoon-Jin;Park, Chae-Jeong;Rho, Hyung-Min;Kim, Ki-Sun
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.236-242
    • /
    • 2012
  • We investigated the influences of night interruption (NI) and night temperature on flowering and flower coloration in Cymbidium. Cymbidium 'Red Fire' and 'Yokihi' were grown under a 9 hours photoperiod (control), a 9 hours photoperiod with NI at a low light intensity (LNI) of 3-7 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, or a 9 hours photoperiod with NI at a high light intensity (HNI) of 120 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for four hours (22:00-02:00 HR) for 16 weeks during the reproductive growth stage (Experiment 1). Thirty month-old Cymbidium 'Red Fire' plants with initiated flowering buds were placed in four different growth chamber with night temperature set points of 6, 9, 12, or $15^{\circ}C$ for 16 hours (18:00 to 09:00 HR) and a daytime temperature of $25^{\circ}C$ (Experiment 2). In Experiment 1, the numbers of visible buds and flowers increased, and time to flowering decreased in both the LNI and HNI treatments, as compared to the control in both cultivars. Red color in Cymbidium 'Red Fire' increased by both LNI and HNI, as evidenced by an increased $a^*$ in plants grown under these conditions, relative to those grown under the control condition. Number of days to visible buds at 9-$15^{\circ}C$ ranged from 31-34 days, as compared to 39 days at $6^{\circ}C$ in Experiment 2. Although as the temperature increased days to flowering decreased when the plant was grown at $15^{\circ}C$ as compared to 6, 9, or $12^{\circ}C$, the red color ($a^*$) also decreased. The number of flowers and percent flowering increased when the night temperature was maintained higher than $9^{\circ}C$. Therefore, NI treatment and maintaining the night temperature at approximately 9-$12^{\circ}C$ during the winter season after flower spike initiation in the reproductive developmental growth stage improve flower quality and controls flowering time.

Effects of Harvesting Time on Yields of Carthami Flos and Grain in Cathamus tinctoris L. (잇꽃 수확시기(收穫時期)에 따른 홍화(紅花) 및 종실(種實) 수량(收量))

  • Choi, Byoung-Ryourl;Park, Kyeong-Yeol;Kang, Chang-Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.232-236
    • /
    • 1997
  • This experiment was conducted to determinate the optimum harvesting time of Carthami Flos and grain in safflower. In dry Carthami Flos yields harvested at different days after flowering, threre was no significant difference between 2 days and 4 days, however, yield harvested at 6 days was decreased significantly compared with 2 days after flowering. As the harvesting time were delayed, lightness (L') and redness (a') of dry Carthami Flos were decreased but yellowness (b') of that was increased. Color differences (${\Delta}E'ab$) of dry Carthami Flos between harvesting days after flowering were not visible between 4 days and 6 days but between those (4 days and 6 days) and 2 days were visible. As the result, the optimum harvesting time of Carthami Flos was 4 days after flowering. Grain yields and its components were affected by not harvesting Carthami Flos but grain harvesting time. Threre was no significant difference in number of grain per flower head, percentage of ripened grain between grain harvesting time. However, weight of 1000 grains and grain yields increased until 20 days after flowering. As a conclusion, the optimum harvesting time was 4 days after flowering for Carthami Flos and 20 days for grain regardless Carthami Flos harvesting time.

  • PDF

Morphological and Phenological Comparisons of New Prunus Species - A Study on the Flower, Flowering Time, and Grafting Efficiency - (새로운 조경수 벚나무류 우량품종의 꽃의 형태적 특성 및 접목번식)

  • 박형순;이정호;안창영;김홍은
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • This study was carried out to investigate the growth characteristics and propagation methods of Prunus species as woody landscape plants. Both the flowering time and the survival rate of grafting were investigated. The results are obtained as follows: The total of flowering period of Prunus species in Kyonggi province area lasted for about 26 days. The flowering time of the species overlaps. These observations suggest that the possibility of interspecific pollination among Prunus species is very high in the kyonggi province area. The total number of flowers in the species in area was in as follows decreasing order : (1) Prunus yedoensis >Prunus pendula var. ascendens > Prunus subhitella > Prunus sesrulata for. fugenzo > Prunus leveillenana var. pendula. The number of carpels in each flower ranged from 0.3 for Prunus subhirtella to 1.8 for Prunus serulata for. fugenzo. In the caseof Prunus sesrulata for. fugenzo, the carpels appeared to be degenerated and thus losted their function. However, there exist two tyoes of Prunus subhirtella. While one type had normal carpel, the other had the degenerated one. The survival rate of grafting was investigated on May 19. Eighty there percent of the plants survived when the grafting was made in the greenhouse in January whereas the plants grafted in nursery in March survived less in that Prunus suhirtella showed 64%, Prunus leveilleana var. pendula 47%, Prunus sesrulata for. fugenzo 43%, Prunus yedoensis 62% and Prunus pendula var. ascendens 24%, respectively. Therefore, it suggested that high humidity and optimal temperature appeared to incase the survival rate of the grated plants. We therefore propose here that grafting should be done in the greenhouse that both humidity and temperature could be controlled to enhance the efficiency of grafting. This will enable as to perform grafting in winter as well.

  • PDF

AtHAP3b Plays a Crucial Role in the Regulation of Flowering Time in Arabidopsis during Osmotic Stress

  • Chen, Nai-Zhi;Zhang, Xiu-Qing;Wei, Peng-Cheng;Chen, Qi-Jun;Ren, Fei;Chen, Jia;Wang, Xue-Chen
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1083-1089
    • /
    • 2007
  • The HAP complex has been found in many eukaryotic organisms. HAP recognizes the CCAAT box present in the promoters of 30% of all eukaryotic genes. The HAP complex consists of three subunits - HAP2, HAP3 and HAP5. In this paper, we report the biological function of the AtHAP3b gene that encodes one of the HAP3 subunits in Arabidopsis. Compared with wild-type plants, hap3b-1 and hap3b-2 mutants exhibited a delayed flowering time under long-day photoperiod conditions. Moreover, the transcription levels of FT were substantially lower in the mutants than in the wild-type plants. These results imply that AtHAP3b may function in the control of flowering time by regulating the expression of FT in Arabidopsis. In a subsequent study, AtHAP3b was found to be induced by osmotic stress. Under osmotic stress conditions, the hap3b- 1 and hap3b-2 mutants flowered considerably later than the wild-type plants. These results suggest that the AtHAP3b gene plays more important roles in the control of flowering under osmotic stress in Arabidopsis.

Flowering Time and Cut-flower Productivity According to Planting Time of New Domestic Gypsophila Cultivars in Plain Area (국산 안개초 신품종의 평야지 정식시기별 개화시기 및 절화 생산성)

  • Cheong, Dong-Chun;Lee, Jin-Jae;Kim, Jeong-Man;Choi, Chang-Hak
    • FLOWER RESEARCH JOURNAL
    • /
    • v.25 no.4
    • /
    • pp.183-188
    • /
    • 2017
  • This study was investigated the flowering time and cut-flower productivity according to planting time (June 15, June 30, July 15, and July 30) of new domestic Gypsophila cultivars 'Dream Song' and 'Pearl Stars' with rooted cutting for the purpose of developing a new cropping system during fall to early winter in an area of plains. Days to flowering, from the planting of rooted cutting to flowering, was shorter for June 30 than for the other planting time, and that for 'Pearl Stars' was 2 - 6 d longer than for 'Dream Song'. The flower stalk length, primary branch number, axillary bud number, and stem diameter increased with the delay in planting time. In particular, the flower stalk length of 'Pearl Stars' was longer than that of 'Dream Song'. In 'Dream Song,' cut flower length, fresh weight, and floret size were increased, and yield was promoted with a later planting time. As a result, the quality and quantity of cut flowers in 'Dream Song' were improved from July 15 planting. 'Pearl Stars' also had a similar tendency as 'Dream Song' in the quality of cut flowers; in contrast, the flowering yield increased until July 15, but decreased on July 30. Therefore, it was thought that 'Dream Song' should be planted within the period from July 15 to July 30 and then produce cut flowers from October to December, and 'Pearl Stars' would be planted within the period from June 30 to July 15 and then produce cut flowers from September to November.

Influence of Accumulated Hours of Low Temperature in Dormant and Changing Temperature after Bud Breaking on Flowering of Main Apple Cultivars in Korea (휴면기 저온 누적 시간 및 발아 후 변온이 국내 주요 사과품종의 개화에 미치는 영향)

  • Kweon, Hun-Joong;Park, Moo-Yong;Song, Yang-Yik;Sagong, Dong-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.252-269
    • /
    • 2017
  • This study was carried out to examine the base temperature to flowering and the average days to flowering by accumulated hours of low temperature ($5.0^{\circ}C$) or changing temperature after bud breaking. Over-all, the prediction of flowering time in the commercial apple cultivars ('Fuji' and 'Tsugaru') and apple cultivars ('Chukwang', 'Gamhong', 'Hongan', 'Honggeum', 'Hongro', 'Hongso', 'Hwahong', 'Summer dream', 'Sunhong') bred in Korea at the Gunwi region for 4 years (from 2009 to 2012) was investigated. Also, this study estimated the flowering time when the air temperature of Gunwi region rises at $5.0^{\circ}C$ was investigated using the same data. The range of accumulated hours of low temperature (chilling requirement) was from 0 hour to 1,671 hours, and the range of high temperature (heat requirements) to flowering after low temperature treatment was from $5.0^{\circ}C$ to $29.0^{\circ}C$. The treatments of changing temperature after bud breaking were classified as constant temperature treatment (control) and $5.0{\sim}10.0^{\circ}C$ elevation or descent treatments. The results show that the average days to flowering was longer with shorter accumulated hours of low temperature, and the average days from bud breaking to flowering of 0 hour treatment was longer about 2~4 weeks than that of 1,335~1,503 hours treatments. In comparing to apple cultivars, the all cultivars were not flowered under $10.0^{\circ}C$ after bud breaking, and the cultivars with low chilling requirements needed low heat requirements for flowering. The average days to flowering of treatments that the air temperature after bud breaking was controlled about $15.0^{\circ}C$ was shorter about 1~3 weeks than that of treatments was controlled about $10.0^{\circ}C$. In the treatment of changing temperature after bud breaking, the average days from bud breaking to flowering of temperature elevation treatment was shorter than that of constant temperature treatment. By use of these results, the base temperature to flowering of main apple cultivars in Korea was seemed to $10.0^{\circ}C$, and if the air temperature of Gunwi region rises about $5.0^{\circ}C$ than that of current, the flowering time was estimated to be delayed by 1 week.

Effect of Amount and Time of Nitrogen Top-dressing at Seeding Dates on Growth and Grain Yield of Soybeans (대두(大豆)의 파종기별(播種期別) 질소추비량(窒素追肥量)과 추비시기(追肥時期)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Lee, Chung Yeol;Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 1987
  • This experiment was conducted to investigate the effect of nitrogen top-dressing and Jangyeopkong was planted under two different seeding time (single cropping-May 15, after barley cropping-June 18), four levels of nitrogen top-dressing (0, 3, 6, 9 kg/10a) and two times of nitrogen top-dressing (Hilling time, Flowering Time). The results obtained are summarized as follow: 1. The days to flowering and maturity were delayed a day longer in hilling times than flowering times of nitrogen top-dressing. 2. The number of nodes of main stem and length of internodes didn't show significance among treatments. But, the number of nodes of branches was much higher when the soybean was planted on May 15, and were higher hilling time than flowering time as the amount of nitrogen top-dressing increased. Especially, the number of nodes of branches was high when 6kg of nitrogen was applied during hilling time. 3. The fresh and dry weight of stem and leaves at 10, 25 and 40 days after flowering were increased by increasing the amount of nitrogen top-dressing. More apparent effect of nitrogen was attained high significant when nitrogen was applied at the time of hilling rather than flowering time. 4. The number and fresh weight of nodule, and dry weight were apparently decreased after barley and were decreased according to the increasing the amount of nitrogen top dressing. The degrees of decreasing was more apparent in the hilling time than in the flowering time. 5. The number of pods per plant, and number and weight of grain per plant were higher when the soybean was planted on May 15, the amount of top dressing increased and hilling time rather than flowering time. Especially, yield component were highest when 6kg of nitrogen was applied during hilling time. Also, the grain yield per 10a showed high significance among treatment, and were high when 6kg of nitrogen was applied during hilling time.

  • PDF

A rare duodichogamous flowering system in monoecious Toona sinensis (Meliaceae)

  • Lee, Hakbong;Kang, Hyesoon;Park, Wan-Geun
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.50-59
    • /
    • 2018
  • Background: Duodichogamy is the rarest form of dichogamy in angiosperms, which is characterized by flowering in the sequence of male${\rightarrow}$female${\rightarrow}$male. Disentangling factors promoting duodichogamy require the discovery of more duodichogamous species in angiosperms. However, extremely limited information on duodichogamous species makes it difficult to make general conclusions. Given the inflorescence morphology and flowering characteristics, the Meliaceae family is highly likely to contain duodichogamous species. Methods: We selected 48 individuals from 20 populations in Korea and investigated their flower morphology, arrangement of flowers by sexual condition within inflorescences, and flowering phases and duration of male and female flowers of Toona sinensis (Meliaceae) for 5 years (2011-2015) to determine if the species shows duodichogamous flowering. Results: Toona sinensis belonging to Meliaceae possessed functionally unisexual flowers with rudimentary parts of the opposite sex. The floral organs in male were larger than those in female, except for ovary length and width. In dichasium, male flowers were observed on primary or lateral branches, whereas female flowers were borne only on lateral branches. Overall, individuals from six different populations flowered in the male${\rightarrow}$female${\rightarrow}$male sequence, thereby male is blooming far longer than female flowers at the level of individual trees (male vs. female = 17-20 days vs. 2-4 days). Conclusions: This is the first study to report a duodichogamously flowering species, T. sinensis, within Meliaceae. Several flowering characteristics observed from T. sinensis may be important clues used to discover additional duodichogamous Meliaceae species. Short flowering period and relatively small number of female flowers, which is analogous to reduced ovule numbers observed in other duodichogamous species, may intensify male-male competition in T. sinensis. This study contributed to narrowing down potential candidates of duodichogamy based on their geographic distributions and flowering time.