• Title, Summary, Keyword: fiber model

Search Result 1,663, Processing Time 0.049 seconds

Development and Application to Fracture Mechanics of Composites with Arbitrary Fiber Size (임의형태(任意形態)의 섬유(纖維)를 가진 복합재료(複合材料) 개발(開發)과 파괴역학(破壞力學)에의 응용(應用)(I) (시편제작을 중심으로))

  • Park, Jung-Do
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.1
    • /
    • pp.7-14
    • /
    • 1993
  • In order to analyze the stress distribution and stress concentration factors in composite materials, especially, in the short fiber of the reinforced composite materials by photoelastic method, it is necessary to develop the photoelastic model material having short fibers with arbitrary size and orientation. In this paper, the orthotropic photoelastic model material having short fibers for the transparent type photoelastic device was developed by the embedded corrosion fiber method. It was found that the model material was satisfactory to the properties of photoelastic model material, and also that the embedded corrosion fiber method can be employed for developing a model material with arbitrary size and direction to analyze the stress distribution and crack problems of composite materials.

  • PDF

Stress Analysis of a Discontinuous Composite Using Mechanics of Materials Approach (불연속 복합체의 재료역학적 접근을 통한 응력해석)

  • 김홍건;양성모;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.63-69
    • /
    • 2003
  • In discontinuous composite mechanics, shear lag theory is one of the most popular model because of its simplicity and accuracy. However, it does not provide sufficiently accurate strengthening predictions in elastic regime then the fiber aspect ratio is small. This is due to its neglect of stress transfer across the fiber ends and the stress concentrations that exist in the matrix regions near the fiber ends. To overcome this shortcoming, a more simplified shear lag model introducing the stress concentration factor which is a function of several variables, such as the modulus ratio, the fiber volume fraction, the fiber aspect ratio, is proposed. It is found that the modulus ratio($E_f$/$E_m$) is the essential variable among them. Thus, the stress concentration factor is expressed as a function of modulus ratio in the derivation. It is found that the proposed model gives a good agreement with finite element results and has the capability to correctly predict the values of interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Characterization of Fiber Pull-out in Orthogonal Cutting of Glass fiber Reinforced Plastics

  • Park, Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • /
    • pp.113-117
    • /
    • 2003
  • The reliability of machined fiber reinforced composites (FRC) in high strength applications and the safety in using these components are often critically dependent upon the quality of surface produced by machining since the surface layer may drastically affect the strength and chemical resistance of the material [1,2,3,4]. Current study will discuss the characterization of fiber pull-out in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the fiber pull-out and the AR coefficients is examined first and effects of fiber orientation, cutting parameters and tool geometry on the fiber pull-out are also discussed.

  • PDF

Visual Simulation of the Drafting Process Using a Two-Velocity Model (2속도 모형을 이용한 드래프트 공정의 가시적 모의 실험)

  • 김지수;김종섭;강태진
    • Textile Science and Engineering
    • /
    • v.36 no.8
    • /
    • pp.602-609
    • /
    • 1999
  • During the yarn manufacturing process, a fiber bundle undergoes drafting process which reduces linear density of the fiber bundle and enhances orientation of staple fibers. We have made a program using simplified algorithm expressing the motion of a two-velocity draft mechanism. To generate a virtual fiber bundle, a staple fiber diagram was made by disassembling a real fiber bundle use in the actual process and the acquired length distribution was used as program data. By executing the program with various parameters, such as draft ratio and gauge length among the many draft parameters which were variable in the actual process, it was possible to predict the characteristics of produced fiber bundle, such as mean linear density and its irregularity. By analyzing the data acquired by execution of the draft simulation program for the two-velocity model drafting process, similar tendencies as in the results of actual drafting experiment carried out by previous researchers could be determined, such as the relation between draft ration and mean deviation of linear density of the fiber bundle.

  • PDF

Thermal conductivity of PLA-bamboo fiber composites

  • Takagi, Hitoshi;Kako, Shuhei;Kusano, Koji;Ousaka, Akiharu
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • 'Green' composites were fabricated from poly lactic acid (PLA) and bamboo fibers by using a conventional hot pressing method. The insulating properties of the PLA-bamboo fiber 'green' composites were evaluated by determination of the thermal conductivity, which was measured using a hot-wire method. The thermal conductivity values were compared with theoretical estimations. It was demonstrated that thermal conductivity of PLA-bamboo fiber 'green' composites is smaller than that of conventional composites, such as glass fiber reinforced plastics (GFRPs) and carbon fiber reinforced plastics (CFRPs). The thermal conductivity of PLA-bamboo fiber 'green' composites was significantly influenced by their density, and was in fair agreement with theoretical predictions based on Russell's model. The PLA-bamboo fiber composites have low thermal conductivity comparable with that of woods.

Neutral detergent fiber rather than other dietary fiber types as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs

  • Choi, Hyunjun;Sung, Jung Yeol;Kim, Beob Gyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.615-622
    • /
    • 2020
  • Objective: The objectives were to investigate correlations between energy digestibility (digestible energy [DE]:gross energy [GE]) and various fiber types including crude fiber (CF), total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF), neutral detergent fiber (NDF), and acid detergent fiber (ADF), and to develop prediction equations for estimating DE in feed ingredients and diets for growing pigs. Methods: A total of 289 data with DE values and chemical composition of feeds from 39 studies were used to develop prediction equations for DE. The equations were validated using values provided by the National Research Council. Results: The DE values in feed ingredients ranged from 2,011 to 4,590 kcal/kg dry matter (DM) and those in diets ranged from 2,801 to 4,203 kcal/kg DM. In feed ingredients, DE:GE was negatively correlated (p<0.001) with NDF (r = -0.84), IDF (r = -0.83), TDF (r = -0.82), ADF (r = -0.78), and CF (r = -0.72). A best-fitting model for DE (kcal/kg) in feed ingredients was: 1,356 + (0.704 × GE, kcal/kg) - (60.3 × ash, %) - (27.7 × NDF, %) with R2 = 0.80 and p<0.001. In diets, DE:GE was negatively correlated (p<0.01) with NDF (r = -0.72), IDF (r = -0.61), TDF (r = -0.52), CF (r = -0.45), and ADF (r = -0.34). A best-fitting model for DE (kcal/kg) in diets was: 1,551 + (0.606 × GE, kcal/kg) - (22.1 × ash, %) - (25.6 × NDF, %) with R2 = 0.62 and p<0.001. All variables are expressed as DM basis. The equation developed for DE in feed ingredients had greater accuracy than a published equation for DE. Conclusion: All fiber types are reasonably good independent variables for predicting DE of swine feeds. The best-fitting model for predicting DE of feeds employed neutral detergent fiber as an independent variable.

Effect of hybrid fibers on flexural performance of reinforced SCC symmetric inclination beams

  • Zhang, Cong;Li, Zhihua;Ding, Yining
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.209-220
    • /
    • 2018
  • In order to evaluate the effect of hybrid fibers on the flexural performance of tunnel segment at room temperature, twelve reinforced self-consolidating concrete (SCC) symmetric inclination beams containing steel fiber, macro polypropylene fiber, micro polypropylene fiber, and their hybridizations were studied under combined loading of flexure and axial compression. The results indicate that the addition of mono steel fiber and hybrid fibers can enhance the ultimate bearing capacity and cracking behavior of tested beams. These improvements can be further enhanced along with increasing the content of steel fiber and macro PP fiber, but reduced with the increase of the reinforcement ratio of beams. The hybrid effect of steel fiber and macro PP fiber was the most obvious. However, the addition of micro PP fibers led to a degradation to the flexural performance of reinforced beams at room temperature. Meanwhile, the hybrid use of steel fiber and micro polypropylene fiber didn't present an obvious improvement to SCC beams. Compared to micro polypropylene fiber, the macro polypropylene fiber plays a more prominent role on affecting the structural behavior of SCC beams. A calculation method for ultimate bearing capacity of flexural SCC symmetric inclination beams at room temperature by taking appropriate effect of hybrid fibers into consideration was proposed. The prediction results using the proposed model are compared with the experimental data in this study and other literature. The results indicate that the proposed model can estimate the ultimate bearing capacity of SCC symmetric inclination beams containing hybrid fibers subjected to combined action of flexure and axial compression at room temperature.

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

Fiber Bridging Model Considering Probability Density Function of Fiber Inclined Angle in Engineered Cementitious Composites (보강 섬유의 배향각에 대한 확률밀도함수를 고려한 ECC내의 섬유 가교 모델)

  • Kang, Cheol-Ho;Lee, Bang-Yeun;Park, Seung-Bum;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.587-596
    • /
    • 2009
  • The fiber bridging model is the crucial factor to predict or analyze the tensile behavior of fiber reinforced cementitious composites. This paper presents the fiber bridging constitutive law considering the distribution of fiber inclined angle and the number of fibers in engineered cementitious composites. The distribution of fiber inclined angle and the number of fibers are measured and analyzed by the image processing technique. The fiber distribution are considerably different from those obtained by assuming two- or three-dimensional random distributions for the fiber inclined angle. The simulation of the uniaxial tension behavior was performed considering the distribution of fiber inclined angle and number of fibers measured by the sectional image analysis. The simulation results exhibit multiple cracking and strain hardening behavior that correspond well with test results.