• Title, Summary, Keyword: fatty acid biosynthesis

Search Result 111, Processing Time 0.058 seconds

The Effects of Surfactants on the Biosynthesis of Galactolipid and the Composition of Fatty Acids in Chloroplast Envelope rind Thylakoid Membrane of Chlorella ellipsoidea

  • Choe, Eun-A;Cheong, Gyeong-Suk;Lee, Cheong-Sam
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.341-349
    • /
    • 1998
  • To analyze the effects of surfactants on the biosynthesis of galactolipid and the composition of fatty acids, the chloroplast envelope and thylakoid membrane were cultivated in medium treated with anionic surfactants, such as linear alkylbenzene sulfonate (0.002%, LAS), a-olefin sulfonate (O.01%, AOS), and sodium lauryl ether sulfate (0.08%, SLES), respectively. During the cultivation, the chloroplast envelope and thylakoid membrane were isolated from the cells collected at the early and middle phase of the culture and the contents of their fatty acid composition were compared with the control. When treated with surfactants, the contents of total lipid MDGD methylesters, and DGDG methylesters decreased significantly when compared with the control. It was also confirmed that more unsaturated fatty acids were involved in the biosynthesis of galactolipid. The fatty acids utilized in the biosynthesis of MGDG were in the chloroplast envelope and in the control, and linoleic acid in LAS, linolenic acid and oleic acid in AOS, and linolenic acid and oleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control linolenic acid and stearic acid in LAS, oleic acid and linolenic acid in AOS, oleic acid and linolenic acid in SLES. In the thylakoid membrane, the major fatty acids in the biosynthesis of MGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, linolenic acid and palmitoleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, palmitoleic acid and oleic acid in SLES.

  • PDF

The Effects of Carbon Sources on the Biosynthesis of the Phospholipid and the Fatty Acid Composition of Mitochondria in Chlorella ellipsoidea

  • Yoon, Seung-Hee;Jang, Jae-Seon;Lee, Chong-Sam
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.343-352
    • /
    • 1996
  • The biosynthesis of phospholipid and the composition of fatty acid were analyzed in mitochondria isolated from Chlorella ellipsoidea treated with carbon sources (glucose, sucrose, raffinose) during the culture. The growth of Chlorella and total lipid contents in mitochondria treated with various carbon sources was increased to compare with the control. When Chlorella mitochondria was treated with various carbon sources, four kinds of phospholipid were increased predominantly. The major fatty acids utilized for the biosynthesis of the phospholipid were analyzed linoleic acid (average 25.18%) and stearic acid (average 10.52%) in the control. But, it was shown that the major fatty acids in Chlorella mitochondria treated with glucose were stearic acid (average 30.93%), palmitic acid (average 17.47%) and stearic acid (average 20.31%), linoleic acid (average 16.68%) in sucrose treatment and oleic acid (average 17.17%), palmitic acid (average 15.64%) in raffinose treatment.

  • PDF

The Effect of Metal Compounds em Biosynthesis of Phospholipid and the Fatty Acid Composition in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 인지질 생합성과 지방산 조성에 미치는 금속 화합물의 영향)

  • Park, Hye-Kyeong;Lee, Chong-Sam;Seo, Kwang-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.43-70
    • /
    • 1994
  • The effects of potassium chromate (500ppm/500ppm), potassium dichromate (500ppm/500ppm), cobalt chloride (100ppm/10ppm), methylmercuric chloride (100ppm/10ppm) on the biosynthesis of phospholipid and their composition of fatty acids in E.coli and B.subtilis were analyzed. The contents of phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, cardiolipin and total lipids in treatment with metal compounds were lower to compare with the control. The major fatty acid utilized for biosynthesis of phospholipid was palmitic acid in control of E.coli and B.subtilis. However, in treatment with metal compounds, changes of fatty acid composition utilized for phospholipid formation were as follows. In E.coli major fatty acids were palimitic acid (ave. 26.26%) and cis-vaccenic acid (ave. 10.94%) in treatment with potassium chromate, palmitic acid (ave. 31.41%/31.42%) and stearic acid (ave. 17.92%/19.41%) in treatment with potassium dichromate and cobalt chloride. And in treatment with raethylmercuric chloride, palmitic acid (ave. 26.66%), stearic acid (ave. 15.50%) and cis-vaccenic acid (ave. 20.59%) were used in phospholipid formation. In B.subtilis, the major fatty acid was palmitoleic acid (ave. 15.29% /10.22%) in treatment with potassium chromate and cobalt chloride, and stearic acid (ave. 16.01%) in treatment with potassium dichromate. On the other hand, cis-vaccenic acid (ave. 9.09%), palmitic acid (ave. 17.23%), stearic acid (ave. 6.66%), myristic acid (ave. 6.34%) and lauric acid (ave. 4.75%) were analyzed into major fatty acids in treatment with methylmercuric chloride. As shown in results, specific fatty acid pattern was came out in treatment with metal compounds according to bacteria and treatments.

  • PDF

The Effect of Metal Compounds on Phospholipid Biosynthesis and Fatty Acid Composition in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 당지질 생합성과 지방산 조성에 미치는 여러가지 금속화합물의 영향)

  • 이소은;이종삼
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.54-67
    • /
    • 1995
  • The biosynthesis of galactolipid and galactose and their composition of fatty acid in E. coli and B. subtilis treated ] with copper chloride (10 ppm), nickel chloride (50 ppm), manganese chloride (100 ppm) during the culture were analyzed. The contents of MGDG, DGDG and total lipids in treatment with metal compounds were lower to compared with the control. In E. coli, the major fatty acid unitized for biosyntheis of MGDG were palimitic acid (ave. 36.87%) and linolenic acid (ave. 14.79%) in control. In MGDG, the major fatty acids were utilized for palmitic acid (ave. 20.00%) and myristic acid (ave. 7.32%) in treatment with copper chloride, lauric acid (ave. 11.71%) and linolenic acid (ave. 11.06%) in manganese chloride treatment. And in nickel chloride treatment, it was palmitic acid (ave. 36.16%) and oleic acid (ave. 6.43%) were use in MGDG formation. In DGDG, in copper chloride treatment, it was lauric acid (ave. 19.41%) and oleic acid (ave. 9.95%) in biosynthesis of galactolipid. and in treatment with nickel chloride linolenic acid (ave. 15.39%) and linoleic acid (ave. 13.51%), in manganese chloride treatment palmitic acid (ave. 29.76%) and palmitoleic acid (ave. 11.35%) were used in DGDG formation. In B. subtilis, the major fatty acids utilized for biosynthesis of galactolipid was palmitic acid (ave. 30.86%) and linolenic acid (ave. 8.36%) in control. Otherwise, in MGDG, the major fatty acids were utilized for palmitic acid (ave. 28.92%) and stearic acid (ave. 13.25%) in treatment with copper chloride, and palmitic acid (ave. 15.73%) and lauric acid (ave. 11.88%) in manganese chloride treatment. It was continned that nickel chloride treatment was palmitic acid (ave. 35.16%) and palmitoleic acid (ave. 12.47%). The major fatty acids in DGDG were utilized for palmitic acid(ave. 34.19%) and linoleic acid (ave. 17.45%) in copper chloride treatment, and lauric acid (ave. 11.16%) and myrisitic acid (ave. 8.65%) in manganese chloride treatment. In treatment with nickel chloride, it was palmitoleic acid (ave. 10.30%) and myristic acid (ave. 7.81%) were used galactolipid formation.

  • PDF

Dietary ε-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

  • Hosomi, Ryota;Yamamoto, Daiki;Otsuka, Ren;Nishiyama, Toshimasa;Yoshida, Munehiro;Fukunaga, Kenji
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • ${\varepsilon}$-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or L-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis.

${\beta}$-ketoacyl-acyl carrier protein synthases for fatty acid biosynthesis in bacteria

  • Lee, Hee-Jung;Youn, Youn-Ji;Ok, Jung-In;Lee, Jung-Won;Park, Hyo-Young;Cho, Kyung-Hae;Choi, Keum-Hwa
    • Proceedings of the PSK Conference
    • /
    • /
    • pp.315.3-316
    • /
    • 2002
  • A universal set of genes encodes the components of dissociated. type II. fa11y acid synthase system that is responsible for producing the multitude of fa11y acid structures found in bacterial membranes. We examined the biochemical basis for the production of fatty acids by bacteria. Several genes from HaemophHus influenzae Rd and three genes from Enterococcus faecalis V583 were predicted to encode homologs of the ${\beta}$-ketoacyl-acyl carrier protein synthases I or II or III of Escherichia coli(FabB or BabF, or FabH)were identified in the genomic database. The protein products were expressed. purified, and biochemically characterized. efFabH and hF abH carried out the initial condensation reaction of fatty acid biosynthesis with acetyl-Coenzyme A as a primer. and hFabB and efFabF1 carried out the elongation condensation reaction of fatty acid biosynthesis with myrixtoyl-ACP.

  • PDF

Effects of the Nitrate and Phosphate Starvation on the Biosynthesis of Phospholipid and the Composition of Fatty Acids in Chlorella Chloroplasts (Chlorella 엽록체의 인지질 생합성 및 지방산조성에 미치는 Nitrate와 Phosphate 결핍효과)

  • 이점규
    • Journal of Plant Biology
    • /
    • v.31 no.3
    • /
    • pp.187-196
    • /
    • 1988
  • Chlorella ellipsoidea were cultured in "cold" media starvated with the nitrate and phsophate sources. The effects of the nitrate and phsophate starvation on the biosynthesis of phospholipid and the composition of fatty acids in chloroplasts isolated from these cells were analyzed. The syntheses of phosphatidylcholine and phosphatidylinositol in the nitrate and phosphate starvation were similarly inhibited as compared with the control but phsophatidylethanolamine synthesis in the nitrate starvation was extremely lower than that in the phosphate starvation. The major fatty acids utilized in phospholipid formation within chloroplasts were palmitic acid and linolenic aicd. However, palmitic acid and stearic acid were dominant in the condition of the nitrate starvation. The levels of palmitic acid were enhanced 3-fold than that of the control. These results suggest that the biosynthesis of phospholipid and the composition of fatty acids were affected by the nitrate and phosphate starvation in the culture media.ure media.

  • PDF

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung;Lee, Sunhee;Lee, Seunghan;Han, Sung Ok;Yoon, Yeo Joon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.990-999
    • /
    • 2012
  • The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.

Effect of Carbon Sources on the Synthesis of Phospholipid and Fatty Acid Composition in Chloroplast of Chlorella ellipsoidea (Chlorella ellipsoidea 엽록체의 인지질 생합성 및 지방산 조성에 미치는 탄소원의 효과)

  • 정효선
    • Journal of Plant Biology
    • /
    • v.33 no.1
    • /
    • pp.49-54
    • /
    • 1990
  • Chlorella cells were cultured with M4N media treated with glucose (5 mM) sucrose (10 mM) and raffinose (30 mM). Phospholipids and their fatty acid compositions were analyzed in the chloroplast isolated from cultured Chlorella cells. Growth rate was prominently raised in the treatment with raffinose. Glucose was the most excellent carbon source in the biosynthesis of total lipid, phosphatidylcholine(PC), phosphatidylethanolamine(PE), phosphatidylinositol(PI) of the chloroplast. Also, the major fatty acids were palmitic, linoleic and linolenic acid during the biosynthesis of phospholipid in the control and in the treatment with carbon sources.

  • PDF

Effects of Carbohydrates on the Biosynthesis of Phospholipids and Fatty Acid Composition in Aspergillus, Rhizopus and Candida Cells (탄수화물이 Aspergillus, Rhizopus, Candida 세포의 인지질 합성과 지방산 조성에 미치는 영향)

  • Cho, Sun-Hee;Lee, Chong-Sam
    • The Korean Journal of Mycology
    • /
    • v.22 no.1
    • /
    • pp.8-30
    • /
    • 1994
  • The synthesis of phospholipids and the composition of fatty acids were analyzed in the fungal cells of Aspergillus phoenicis, Rhizopus acidus and Candida albicans treated with carbon sources (glucose, sucrose, raffinose) during the culture. Growth ratios were predominantly in Aspergillus and Candida treated with sucrose and those in Rhizopus treated with glucose. The synthesis of total lipids were accelerated in Aspergillus and Rhizopus with glucose and the contents of total lipid was increased in Candida with raffinose. The glucose treatment increased Phosphatidylinositol(PI) content by 73.7% for Aspergillus and Phosphatidylcholine(PC) content by 292% for Rhizopus. In sucrose treatment the synthesis of PI was accelerated 112% for Aspergillus and that of PC was increased 77.7% for Rhizopus and 71.8% for Candida. In raffinose treatment, the content of PC was increased 79.5% for Aspergillus, the biosynthesis of Phosphatidylethanolamine(PE) was inhanced 50.9% for Rhizopus and 49.1% for Candida. In Aspergillus and Candida, oleic acid and linoleic acid were major fatty acids for biosynthesis of PC and PE when the three carbon sources were treated. The major fatty acids for biosynthesis of phospholipid was palmitic acid and linoleic acid in Aspergillus, palmitic acid in Rhizopus and oleic acid in Candida. Palmitic acid was one of major fatty acids utilized for the biosynthesis of phospholipid(PC, PE, PI) in the fungal cells treated with carbohydrates.

  • PDF