• Title, Summary, Keyword: fast prediction

Search Result 512, Processing Time 0.044 seconds

A Fast Inter Prediction Encoding Technique for Real-time Compression of H.264/AVC (H.264/AVC의 실시간 압축을 위한 고속 인터 예측 부호화 기술)

  • Kim, Young-Hyun;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1077-1084
    • /
    • 2006
  • This paper proposed a fast algorithm to reduce the amount of calculation for inter prediction which takes a great deal of the operational time in H.264/AVC. This algorithm decides a search range according to the direction of predicted motion vector, and then performs an adaptive spiral search for the candidates with JM(Joint Model) FME(Fast Motion Estimation) which employs the rate-distortion optimization(RDO) method. Simultaneously, it decides a threshold cost value for each of the variable block sizes and performs the motion estimation for the variable search ranges with the threshold. These activities reduce the great amount of the complexity in inter prediction encoding. Experimental results by applying the proposed method .to various video sequences showed that the process time was decreased up to 80% comparing to the previous prediction methods. The degradation of video quality was only from 0.05dB to 0.19dB and the compression ratio decreased as small as 0.58% in average. Therefore, we are sure that the proposed method is an efficient method for the fast inter prediction.

A Fast Intra-Prediction Method in HEVC Using Rate-Distortion Estimation Based on Hadamard Transform

  • Kim, Younhee;Jun, DongSan;Jung, Soon-Heung;Choi, Jin Soo;Kim, Jinwoong
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.270-280
    • /
    • 2013
  • A fast intra-prediction method is proposed for High Efficiency Video Coding (HEVC) using a fast intra-mode decision and fast coding unit (CU) size decision. HEVC supports very sophisticated intra modes and a recursive quadtree-based CU structure. To provide a high coding efficiency, the mode and CU size are selected in a rate-distortion optimized manner. This causes a high computational complexity in the encoder, and, for practical applications, the complexity should be significantly reduced. In this paper, among the many predefined modes, the intra-prediction mode is chosen without rate-distortion optimization processes, instead using the difference between the minimum and second minimum of the rate-distortion cost estimation based on the Hadamard transform. The experiment results show that the proposed method achieves a 49.04% reduction in the intra-prediction time and a 32.74% reduction in the total encoding time with a nearly similar coding performance to that of HEVC test model 2.1.

Fast Intra Prediction in HEVC using Transform Coefficients and Coded Block Flag (변환계수와 CBF를 이용한 HEVC 고속 화면 내 예측)

  • Kim, Nam-Uk;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.140-148
    • /
    • 2016
  • HEVC(High Efficient Video Coding) has twice times better compression ratio than H.264/AVC, but since the computational complexity has significantly increased in the encoder side, it may cause difficulty in real-time SW implementation in the encoder side. This paper proposes two methods about fast intra prediction. First, fast mode and prediction unit decision method using transform coefficients of the original block is proposed. and second, fast prediction unit decision method using coded block flag(cbf) is proposed. The proposed method achieves 42% encoder speed up with 0.8% bitrate increase compared with HM16.0.

Fast Depth Video Coding with Intra Prediction on VVC

  • Wei, Hongan;Zhou, Binqian;Fang, Ying;Xu, Yiwen;Zhao, Tiesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3018-3038
    • /
    • 2020
  • In the stereoscopic or multiview display, the depth video illustrates visual distances between objects and camera. To promote the computational efficiency of depth video encoder, we exploit the intra prediction of depth videos under Versatile Video Coding (VVC) and observe a diverse distribution of intra prediction modes with different coding unit sizes. We propose a hybrid scheme to further boost fast depth video coding. In the first stage, we adaptively predict the HADamard (HAD) costs of intra prediction modes and initialize a candidate list according to the HAD costs. Then, the candidate list is further improved by considering the probability distribution of candidate modes with different CU sizes. Finally, early termination of CU splitting is performed at each CU depth level based on the Bayesian theorem. Our proposed method is incorporated into VVC intra prediction for fast coding of depth videos. Experiments with 7 standard sequences and 4 Quantization parameters (Qps) validate the efficiency of our method.

CU Depth Decision Based on FAST Corner Detection for HEVC Intra Prediction (HEVC 화면 내 예측을 위한 FAST 에지 검출 기반의 CU 분할 방법)

  • Jeon, Seungsu;kim, Namuk;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.484-492
    • /
    • 2016
  • The High efficiency video coding (HEVC) is the newest video coding standard that achieves coding efficiency higher than previous video coding standards such as H.264/AVC. In intra prediction, the prediction units (PUs) are derived from a large coding unit (LCU) which is partitioned into smaller coding units (CUs) sizing from 8x8 to 64x64 in a quad-tree structure. As they are divided until having the minimum depth, Optimum CU splitting is selected in RDO (Rate Distortion Optimization) process. In this process, HEVC demands high computational complexity. In this paper, to reduce the complexity of HEVC, we propose a fast CU mode decision (FCDD) for intra prediction by using FAST (Features from Accelerated Segment Test) corner detection. The proposed method reduces computational complexity with 53.73% of the computational time for the intra prediction while coding performance degradation with 0.7% BDBR is small compared to conventional HEVC.

Hierarchical Fast Mode Decision Algorithm for Intra Prediction in HEVC (HEVC 화면 내 예측을 위한 계층적 고속 모드 결정 알고리즘)

  • Kim, Tae Sun;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.57-61
    • /
    • 2015
  • This paper proposes a fast intra prediction algorithm for the High Efficiency Video Coding (HEVC). HEVC has 35 modes, such as DC mode, Planar mode, and 33 angular modes for the intra-prediction. To reduce the complexity and to support fast decision for intra prediction, this paper proposes a hierarchical mode decision method (HMD). The proposed HMD mainly focuses on how to reduce the number of prediction modes. The experimental results show that the proposed HMD can reduce the encoding time about 39.17% with little BDBR loss. On average, the proposed HMD can achieve the encoding time saving e about 14.13 ~ 19.37% compared to that of the existing algorithms with slightly increasing 0.01 ~ 0.42% BDBR.

Fast I Slice Encoding/Decoding Method in H.264/AVC (H.264/AVC에서 고속 I Slice 부호화/복호화 방법)

  • Oh, Hyung-Suk;Shin, Dong-In;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • This paper develops a fast method performing intra prediction which only restores block boundary pixels without decoding all blocks in an I slice of H.264/AVC. To accomplish this, we develop a fast integer inverse DCT scheme that quickly decodes residual block boundary which can be consisted of references pixels. we add the restored block boundary pixels and appropriate calculated prediction pixels for each intra prediction mode and consist of needed reference pixels. The experiments showed that the proposed method produces the reliable performance with reducing the computational complexity, compared to conventional method when applied to H.264/AVC integer DCT.

A Fast CU Size Decision Optimal Algorithm Based on Neighborhood Prediction for HEVC

  • Wang, Jianhua;Wang, Haozhan;Xu, Fujian;Liu, Jun;Cheng, Lianglun
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.959-974
    • /
    • 2020
  • High efficiency video coding (HEVC) employs quadtree coding tree unit (CTU) structure to improve its coding efficiency, but at the same time, it also requires a very high computational complexity due to its exhaustive search processes for an optimal coding unit (CU) partition. With the aim of solving the problem, a fast CU size decision optimal algorithm based on neighborhood prediction is presented for HEVC in this paper. The contribution of this paper lies in the fact that we successfully use the partition information of neighborhood CUs in different depth to quickly determine the optimal partition mode for the current CU by neighborhood prediction technology, which can save much computational complexity for HEVC with negligible RD-rate (rate-distortion rate) performance loss. Specifically, in our scheme, we use the partition information of left, up, and left-up CUs to quickly predict the optimal partition mode for the current CU by neighborhood prediction technology, as a result, our proposed algorithm can effectively solve the problem above by reducing many unnecessary prediction and partition operations for HEVC. The simulation results show that our proposed fast CU size decision algorithm based on neighborhood prediction in this paper can reduce about 19.0% coding time, and only increase 0.102% BD-rate (Bjontegaard delta rate) compared with the standard reference software of HM16.1, thus improving the coding performance of HEVC.

Fast Prediction Unit Decision Using Quantized Transform Coefficient (양자화된 트랜스폼 계수를 이용한 고속 Prediction Unit 결정방법)

  • Gweon, Ryeong-Hee;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.725-733
    • /
    • 2012
  • MPEG and VCEG have constituted a collaboration team called JCT-VC(Joint Collaborative Team on Video Coding) and have been developing the HEVC(High Efficiency Video Coding) standard. The next generation video coding standard HEVC shows higher compression rate compared with the H.264/AVC standard, but the encoder computational complexity of the HEVC encoder is significantly high. In order to reduce this computational complexity in the HEVC encoder, a fast prediction unit decision is proposed. The proposed fast prediction unit decision method reduces the encoder complexity by skipping the remaining prediction units if the current prediction unit does not have any non-zero quantized transform coefficient. The proposed method reduces the encoder computational complexity by 50.3% comparing with HM6.0 but it maintains the same level of coding efficiency.

Fast Intra Prediction Mode Decision for HEVC (HEVC의 고속 화면내 예측 모드 결정 기법)

  • Kim, Dong-Hyun;Kim, Jae-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.102-109
    • /
    • 2014
  • Intra prediction in HEVC is also significantly improved from H.264/AVC with the increased prediction modes up to 35 that results in increase of the complexity cost. Hence, a fast intra mode decision algorithm is required for real-time applications. A fast intra mode decision is proposed in this paper for further complexity reduction in addition to the RMD (Rough Mode Decision) that has been adopted into the HEVC reference software, referred to as HM, for fast intra prediction. The proposed method reduces the complexity of intra mode decision by limiting the number of search modes in both steps of RMD and the final mode decision. Experimental results show that the proposed method provide about 13.2% encoding time reduction with 1.0% BD-rate increase on average over test sequences in HM 12.0.