• Title, Summary, Keyword: ethyl methacrylate

Search Result 119, Processing Time 0.1 seconds

Synthesis and Antistatic Property of Acryl Urethane Polymer (아크릴우레탄 폴리머의 합성과 대전방지특성)

  • Hong, Kyung-Ho;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.93-101
    • /
    • 2009
  • Antistatic acrylic resin is made from n-butyl methacrylate, methyl methacrylate, dimethyl amino ethyl methacrylate(DMAEMA), 2-ethyl hexyl methacrylate, hydroxy ethyl methacrylate, 2,2'-azobis iso-butyronitrile by synthesis. To achieve a lowest surface resistance of antistatic acrylic resin was applied to a variety of synthesis processes. The acrylic resin has been determined from the value of surface resistance and -then the antistatic acrylic resin including dimethyl amino ethyl methacrylate of the 10%, 20% and 30% is synthesized. Finally, dimethyl sulfate(DMS) on a variety of weight ratios is added to antistatic acrylic resin. When DMAEMA / DMS weight ratio is 1/1, antistatic acrylic resin isn't haze the lower the surface resistance. Compared to the traditional antistatic agent, all aspects of the physical properties is outstanding.

Synthesis of Block Copolymers Composed of Poly(N,N-dimethylamino ethyl methacrylate) and PEG and Formation of Nanoaggregation (Poly(N,N-dimethylamino ethyl methacrylate)와 PEG로 이루어진 블록공중합체 합성 및 나노복합체 형성)

  • 김은정;최호석;이지나;박기동;육순홍
    • Polymer Korea
    • /
    • v.24 no.6
    • /
    • pp.854-859
    • /
    • 2000
  • The synthesis of poly(N,N-dimethylamino ethyl methacrylate (DMAEMA)-block-poly(ethylene glycol) (PEG)) copolymer has been carried out and the block copolymer was characterized by FT-IR, DSC, and $^1$H-NMR. The formation of polymeric nanoaggregation was observed in the solution mixture of poly(DMAEMA) -block-PEG copolymer and poly (ethyl acrylamide) (EAAm) due to the intermolecular interaction via hydrogen bond between DMAEMA and poly(EAAm). The formation of polymeric nanoaggregation was observed above critical micelle concentration (CMC).

  • PDF

Isothermal Drying Rate and Copolymerization of Vinyl Acetate/Alkyl Methacrylates (비닐 아세테이트/알킬메타크릴레이트계 공중합과 등온건조속도)

  • Kim, Min-Sung;Seul, Soo-Duk
    • Polymer Korea
    • /
    • v.33 no.3
    • /
    • pp.230-236
    • /
    • 2009
  • Water soluble vinyl acetate/alkyl methacrylate copolymers were prepared by the emulsion copolymerization of vinyl acetate and various methacrylates such as methyl methacrylate (MMA) and ethyl methacrylate (EMA). Potassium persulfate (KPS) and ammonium persulfate (APS) were used as an initiator. Poly (vinyl alcohol) (PVA) was used as a protective colloid. The drying characteristics of the prepared poly(vinyl acetate-co-methyl methacrylate) (PVAc/PMMA), poly(vinyl acetate-co-ethyl methacrylate) (PVAc/PEMA) were studied using moisture meter at the temperature between 100 and $200^{\circ}C$. The significant results are described as follows. The activation energy of the isothermal drying process of the copolymers has the order of PVAc/PMMA> PVAc/PEMA> PVAc.

Synthesis and PSA Properties of Acryl Modified Resin for Semiconductor Wafer (반도체 웨이퍼용 아크릴 변성 수지의 합성 및 점착 특성)

  • Sim, Jong Bae;Shin, Kyoung Sub;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • In this study, acryl resin PSA containing hydroxyl group based on 2-EHA (2-ethyl hexyl acrylate), 2-EHMA (2-ethyl hexyl methacrylate), 2-HEA (2-Hydroxy ethyl acrylate), acrylic acid was synthesized and then, isocyanate modified acryl resin PSA prepared with adduct reaction according to the amount of MOI (Methacryloyloxyethyl isocyanate) or 2-isocyanatoethyl methacrylate that can improve the curing property. This research shows that the initial PSA and peel adhesion are decreased according to the increase of the amount of the MOI and isocyanate curing agent. After UV irradiating, the peel adhesion is decreased with increasing the amount of the MOI (Methacryloyloxyethyl isocyanate) and isocyanate curing agent, because of the high curing property.

Synthesis of Well-Defined Block Copolymer Dispersants with (2-Dimethylamino)ethyl Methacrylate and Oligo(ethylene oxide)methyl Ether Methacrylate via ATRP for Dispersing Copper Phthalocyanine Pigment (Copper Phthalocyanine Pigment의 분산을 위한 (2-Dimethylamino)ethyl Methacrylate와 Oligo(ethylene oxide)methyl Ether Methacrylate를 포함하는 잘 규정된 블록 공중합체형 분산제의 원자 이동 라디칼 중합을 이용한 합성)

  • Kim, Eun-Hee;Kim, Bong-Soo;Jung, Ki-Suk;Kim, Jin-Goo;Paik, Hyun-Jong
    • Polymer Korea
    • /
    • v.36 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • The dispersion of pigment particles is important because it is capable of increasing the color strength, contrast, and transmittance of color-LCD products. Pigment dispersion properties are very important factors for the quality of LCD color filters. The chemical structure of polymeric dispersants for pigment is important to improve dispersion stability and prevent aggregation or flocculation of pigment in organic or aqueous systems. Polymeric dispersants should contain both anchoring group that interacts with pigment surface and stabilizing group that provides steric stabilization. Moreover, the molecular weight and composition of block copolymer have the an effect on pigment dispersion. In this study, adequate dispersants, block copolymers containing (2-dimethylamino)ethyl methacrylate as anchoring group and oligo(ethylene oxide)methyl ether methacrylate as a stabilizing group were designed and synthesized by atom transfer radical polymerization in order to prepare well-defined structure, molecular weight and composition.

Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant (초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합)

  • Park, Kyung-Kyu;Kang, Chang-Min;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • Dispersion polymerization of methyl acrylate, ethyl acrylate, butyl acrylate, and glycidyl methacrylate were performed in supercritical $CO_2$ at $80\;^{\circ}C$ and 346 bar. Glycidyl methacrylate linked poly(dimethylsiloxane) (GMS-PDMS) surfactant, which was prepared by linking glycidyl methacrylate to monoglycidyl ether terminated PDMS with amino-propyltriethoxysilane, was used as surfactant for the dispersion polymerization in $CO_2$. The yield of the poly(alkyl acrylate) polymers, synthesized in $CO_2$ medium, decreased as the alkyl tail of the acrylate monomers increased. Poly(glycidyl methacrylate) and poly(methyl acrylate) were produced in bead form whereas poly(ethyl acrylate) and poly(butyl acrylate) were viscous liquid. The poly(glycidyl methacrylate) particles had a number average diameter of 2.45 ${\mu}m$ and monodisperse distribution. The poly(methyl acrylate) had a number average diameter of 0.52 ${\mu}m$ and the particle size distribution was bimodal. The glass transition temperatures ($T_g$) of the poly(glycidyl methacrylate) and the poly(alkyl acrylate) products were 4~9 K higher than the $T_g$ of the corresponding acrylate polymers synthesized in conventional processes.

Preparation and Release Property of Alginate Beads Immobilizing Poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate) (Poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)가 고정화된 알지네이트 비드 제조 및 방출 특성)

  • Kang, Mi-Kyoung;Kim, Jin-Chul
    • Polymer Korea
    • /
    • v.34 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • Alginate beads were prepared using poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)(P(NIPAM-co-DMAEMA)). First, P(NIPAM-co-DMAEMA) was immobilized on the surface of alginate beads by taking advantage of electrostatic interaction between alginate and P(NIPAM-co-DMAEMA). Second, P(NIPAM-co-DMAEMA) was contained in the matrix of alginate beads. P(NIPAM-co-DMAEMA) were prepared by a free radical polymerization at $74^{\circ}C$ for 12 h. The weight ratio of NIPAM to DMAEMA monomer was 95/5. The copolymer was identified by $^1H$-NMR. Releases from the alginate beads were observed at 30, 37, and $45^{\circ}C$ using blue dextran or FITC-dextran(fluorescein isothiocyanate-dextran) as a model drug. The effect of temperature on the degree of release from the beads was insignificant. FITC-dextran was released more than blue dextran possibly due to its smaller molecular weight.

Synthesis of 2,4-Dienoic Acid Derivatives by Palladium Catalyzed Homogeneous Reaction (팔라듐 촉매 균일계 반응을 이용한 2,4-디엔산 유도체의 합성)

  • Jin Il Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.441-448
    • /
    • 1983
  • A wide variety of vinylic bromides such as (Z)-1-bromopropene, 1-bromo-2-methylpropene, 2-bromo-3-methyl-2-butene, (E)-ethyl 2-methyl-3-bromo-2-propenoate, 1-bromo-cyclohexene has been found to react with ethyl acrylate, ethyl 3-butenoate, allyl cyanide, (E)-ethyl crotonate, ethyl 4-pentenoate, methyl 10-undecenoate and methyl methacrylate in the presence of triethylamine and a palladium acetate-triorthotolylphosphine catalyst. In general, 2,4-dienoic acid derivatives were obtained in good yield and stereochemistry of the products was determined. Using this method, four, five and eleven carbon-carbon extension with ethyl 3-butenoate, ethyl 4-pentenoate and methyl 10-undecenoate was also possible.

  • PDF

Capacitive Humidity Sensor Using Reactive Methacrylate Copolymers (반응성이 있는 메타크릴레이트 공중합체를 이용한 정전용량형 습도센서)

  • 공명선;이임렬
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.21-27
    • /
    • 2003
  • The copolymers with various composition of methyl methacrylate (MMA), ethyl methacrylate (EMA), methacrylic acid (MA) and hydroxyethyl methacrylate (HEMA) were synthesized for capacitive humidity sensitive materials. The capacitive humidity sensor consisted of a polymethacrylate film coated on both sides with gold electrode. Capacitance versus relative humidity increased with HEMA content in the copolymer. In the case of self-crosslinkable MMA/MA/HEHA= 40/10/10, the average capacitance at 30%RH, 60%RH and 90%RH are 102, 134 and 166 pF, respectively. And also, the hysteresis, temperature cycle and long-term stability were evaluated as a capacitance humidity sensor.

  • PDF