• Title, Summary, Keyword: ethyl acetoacetate

Search Result 30, Processing Time 0.033 seconds

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (1,4-디하이드로피리딘 산류의 합성)

  • Suh, Jung-Jin;Hong, You-Hwa
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.80-86
    • /
    • 1989
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methyl 5-(2'-phenylsulfinyl) ethyl ester (10) or 2,6-Dimethyl-4-(2' or 3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-alkyl 5-(2-methylsulfonyl) ethyl ester (14a, b, c) were hydrolyzed by treatment with NaOH in aqueous EtOH solution to give 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl ester (4b), 2,6-Dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl ester (4c) and 2,6-Dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monoisopropyl ester (4d) in 80 -90% yield. By the same procedure, 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3,5-bis (2'-methylsulfonyl) ethyl ester (15) gave 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid (4e) in 96% yield.

  • PDF

The Effect of Solvent Density on the Ethyl Acetoaceate Tautomerism (에틸 아세토아세테이트 토토머리즘 평형 상수의 밀도 의존성)

  • Park, YoonKook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.291-295
    • /
    • 2006
  • The keto-enol tautomeric equilibrium constant, K, of ethyl acetoacetate in compressed and supercritical carbon dioxide was determined by using FT-IR (Fourier transform infrared) spectroscopy at three different temperatures. In order to investigate the effect of solvent density, the $CO_{2}$ pressure was systematically changed at a constant temperature. As the $CO_{2}$ density is increased, the amount of keto tautomer is increased, causing the K value to decrease. The modified lattice fluid hydrogen bonding theory has been applied to investigate the effect of density on the K.

CuI Nanoparticles as New, Efficient and Reusable Catalyst for the One-pot Synthesis of 1,4-Dihydropyridines

  • Safaei-Ghomi, Javad;Ziarati, Abolfazl;Teymuri, Raheleh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2679-2682
    • /
    • 2012
  • A simple one-pot synthesis of two derivatives of 1,4-dihydropyridines has been described under reflux conditions using copper iodide nanoparticles (CuI NPs) as a catalyst in high yields. This method demonstrated four-component coupling reactions of aldehydes and ammonium acetate via two pathways. In one route, the reaction was performed using 2 eq ethyl acetoacetate while in the other one 1 eq ethyl acetoacetate and 1 eq malononitrile were used. The CuI NPs was reused and recycled without any loss of activity and product yield. It is noteworthy to state that wide range of the 1,4-dihydropyridines have attracted large interest due to pharmacological and biological activities.

Synthesis of novel Heterocycles Through Reaction of Indolin-2-one Derivatives with Active Methylene and Amino Reagents

  • Abdel-Latif, F.F.;Ahmed, E.Kh.;Mekheimer, R.;Mashaly, M.M.
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.507-509
    • /
    • 1997
  • Several new spiro compounds were synthesized via one-pot ternary condensation of isatin, malononitrile and each of thiobarbituric acid, barbituric, 3-methyl-pyrazolin-5-one, 1-phenyl-3-methyl-pyrazolin-5-one, acetylacetone, benzoylacetone, ethyl acetoacetate, phenacyl cyanide or ethyl-cyanoacetate dimer. Structures and reaction mechanisms were reported and supported via a second synthetic route.

  • PDF

A Convenient Allylation of 1,n-Dicarbonyl Compounds Using Organoindium Reagents

  • Lee, Pil Ho;DongSeo, Mun;Lee, Gu Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1380-1384
    • /
    • 2001
  • The chemoselective reactions of 1,n-dicarbonyl compounds with allyl halides using indium metal were investigated. $\alpha-Ketoesters$ such as ethyl pyruvate, ethyl 3-methyl-2-oxobutyrate and ethyl benzoylformate reacted with a variety of allyl halides i n the presence of indium to afford hydroxy unsaturated carbonyl compounds in good to excellent yields in MeOH/HCl at $25^{\circ}C.$ For the allyl bromide, the presence of various substituents at the $\alpha$ or $\gamma$ position exhibited little effects on both the reaction rates and yields. Ethyl acetoacetate or ethyl levulinate was treated with allylindium reagent to give hydroxy unsaturated carbonyl compounds in good yield. These results mean that both reactivity and selectivity are independent of the distance between carbonyl groups. 2,3-Butanedione or 1-phenyl-1,2-propanedione reacted with allylindium to produce monoallylation product as major compound.

  • PDF

Novel Syntheses of Isomers of Damascenone from Ethyl 2,6,6-Trimethyl-4-oxo-2-cyclohexene-1-carboxylate

  • Lee, Woo-Young;Jang, Se-Young;Lee, Jun-Gu;Chae, Woo-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 1991
  • Three isomers of damascenone, odorous terpenic ketones, have been synthesized conveniently from a same starting material, ethyl 2,6,6-trimethyl-4-oxo-2-cyclohexene-1-carboxylate(1), which was easily available by the acid-catalyzed condensation of mesityl oxide or acetone with ethyl acetoacetate. ${\alpha}$-Damascenone(7) was prepared by converting the enone ester 1 into the corresponding tosylhydrazone(4), followed by treating with 4 molar equiv of allyllithium. ${\beta}$-Damascenone(12) was synthesized by chemoselective reduction of 1 with sodium borohydride/cerium chloride to give corresponding allylic alcohol 8, conversion of 8 into acetate 9, and thermal decomposition of 9 with DBU to afford ethyl ${\beta}$-safranate(10), followed by reaction with an excess amount of allyllithium. ${\gamma}$-Damascenone(15) was obtained by dehydration of 8 with boric acid to furnish ${\gamma}$-safranate(13), followed by treatment with 2 molar equiv of allyllithium.

  • PDF

Studies on the Regioselective Synthesis of 1,3-Dimethyllumazine Derivatives by Using the Timmis Reaction and Their Side Chain Reactions (Timmis반응을 이용한 1,3-Dimethyllumazine 유도체의 위치 선택적 합성과 곁사슬반응에 관한 연구)

  • Kim, Yeon Hee;Kim, Jae Seung;Kang, Yong Han
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.535-539
    • /
    • 1999
  • 1,3-Dimethyllumazine derivatives were synthesized by using Timmis reaction. The reaction of 4-amino-1,3-dimethyl-5-nitrosouracil(1) with 2,4-pentanedione, ethyl cyanoacetate, and ethyl acetoacetate provided 6-acetyl-1,3,7-trimethyllumazine (2), ethyl 7-amino-1,3-dimethyllumazine-6-carboxylate (4), and ethyl 1,3,7-trimethyllumazine-6-carboxylate (5) in good yieId, respectively. The various 1,3-dimethyllumazine derivatives were prepared from the side chain reactions of 6-acetyl and ester group in compound 2,4, and 5. The structure and physical properties of obtained compounds were characterized NMR, UV, IR spectrum, and elementary analysis.

  • PDF

The diastereoselective synthesis of 2-methyl-5(S)-hexanolide (Carpenter bee pheromone의 2-methyl-5(S)-hexanolide의 부분 입체선택적 합성)

  • Chang, Jay-Hyok;Lee, Sang-Jun;Kim, Jung-Han
    • Applied Biological Chemistry
    • /
    • v.37 no.1
    • /
    • pp.25-29
    • /
    • 1994
  • 2-methyl-5(S)-hexanolide(1); the major component of pheromonal blend of the male carpenter bee was synthesized via Homer-Emmons reaction from Ethyl(S)-3-hydroxybutyrate(2a) which had been obtained by Baker's Yeast reduction in overall yield 39%.

  • PDF

Mn(III)-Mediated Radical Cyclization for Δ1-3-Octalone Synthesis

  • Lee, Mi-Ai;Yang, Jae-Deuk;Kim, Moon-Soo;Jeon, Hye-Sun;Baik, Woon-Phil;Koo, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.736-740
    • /
    • 2002
  • An efficient and practical synthetic method of △1 -3-octalone, which is a versatile building block for thesyntheses of polycyclic compounds, has been developed. The dianion of ethyl acetoacetate reacts with cyclohexene-1-carboxaldehyde (3) to produce the aldol adduct 6, which then undergoes Mn(Ⅲ)-mediated radical cyclization followed by acetate elimination to give △1 -3-octalone 4. A detailed mechanistic insight of Mn(Ⅲ)-mediated cyclization of 6 has been disclosed.