• Title, Summary, Keyword: equilibrium process

Search Result 846, Processing Time 0.047 seconds

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.

Daizhen's theory of Zhong-He (대진(戴震)의 중화론(中和論): 미발론(未發論)의 해체와 욕망 소통론의 수립)

  • Hong, Seong-mean
    • Journal of Korean Philosophical Society
    • /
    • v.116
    • /
    • pp.437-464
    • /
    • 2010
  • The article, focusing on the theory of Zhong-He, sheds a new light on the philosophy of Daizhen. The theory of Zhong-He, according to the philosophical system of Zhuxi, serves as the theoretical foundation in erecting the apriori moral nature and guiding mental cultivation of subjects. Daizhen, on the contrary, criticizes the doctrine of Zhonghe in Zhuxi's philosophy as it produces negative side-effects of moral dogmatism. Zhuxi's doctrine, according to Daizhen, as it reduce the origin of morality to apriori condition of consciousness and delimit the range of cultivation to psychological realm of subjects, restricts moral subjects in the fortress of their own subjectivity. In this vein of his criticism, Daizhen attempts new interpretation on Zhonghe. The character Zhong (中), according to him, does not refer to apriori moral state or metaphysical moral substance as it does in the doctrine of Zhuxi. On the contrary, it denotes the state in which diverse existent beings are placed in their own position by their own dispositions. Similarly, the other character He (和) does not refer to the condition where an individual's consciousness is in equilibrium, but to the process of achieving the harmony of entire society in which diverse existent beings are communicating to each other. With his novel interpretation of the theory of Zhong-He, Daizhen could dissolve the tradition of Weifa (未發) and moral subjectivism in Zhuxi's philosophy and provide a way of establishing reciprocal communication and harmony between various individuals. It is in his ethics of rational mutual understanding where the significance of Daizhen's philosophy should be found.

Characteristics of Bunsen Reaction using Ultrasonic Irradiation in Sulfur-iodine Hydrogen Production Process (황-요오드 수소 제조 공정에서 초음파 조사를 이용한 분젠 반응의 특성)

  • Kim, Hyo Sub;Lee, Dong Hee;Lee, Jong Gyu;Park, Chu Sik;Kim, Young Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.56-61
    • /
    • 2018
  • In Bunsen reaction section for the integrated operation of sulfur-iodine (SI) process, $I_2$ and $H_2O$ reactants are supplied as dissolved species in an $HI_x$ solution. Most of the $H_2SO_4$ product is found in the $HI_x$ phase when Bunsen reaction is performed using the $HI_x$ solution and $SO_2$ feed, so that the volume ratio of the $H_2SO_4$ phase to the $HI_x$ phase is very low. In this study, we investigated the effects of ultrasound irradiation on Bunsen reaction using the $HI_x$ solution to improve its phase separation performance. With ultrasound irradiation, the amount of $H_2SO_4$ moved to the $H_2SO_4$ phase from the $HI_x$ phase increased by up to 58.0 mol% and the volume of $H_2SO_4$ phase also increased by up to 13.1 vol%. In particular, the effect of ultrasound irradiation on the phase separation was improved with decreasing operating temperature, $I_2$ and $H_2O$ feed concentrations. The ultrasound irradiation induces the formation of additional $H_2O$ molecules by shifting microscopically the reaction equilibrium in the $HI_x$ phase. Afterward, the additionally generated $H_2O$ and isolated $H_2SO_4$ molecules form more $H_2SO_4{\cdot}xH_2O$ (x = 5-6) clusters that can be moved to the $H_2SO_4$ phase.

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean Geoenvironmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

Study on Press-drying of Sapwood and Heartwood of Oak (상수리나무 변재(邊材)와 심재(心材)의 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Jung, Hee Suk;Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 1977
  • Press drying was used on sapwood and heartwood of oak (Qercus acutissima Carruthers) to find profitable means of drying low grade logs. This study was designed to investigate the process of press drying considering core temperature, current moisture content, drying rate, drying time, final moisture content, dimensional change and drying defects. The drying tests were conducted using 1.5 centimeter thick material at platen temperature of $175^{\circ}C$ and pressure of 35psi. The results were summarized as fallows. 1. Core temperature was divided into three stages of drying characterized by initial heating period, plateau temperature, and period of rising core temperature. Plateau temperature of heartwood material was higher and longer than that of sapwood material. 2. The predicting equation for change in drying rate of sapwood material was log y=-2.7925-0.0811x as function of time. That of heartwood material was log y=-3.3382-0.0468x. 3. Sapwood material reduced the moisture content from 59 to 2.5 percent in 45minutes. Heartwood material reduced the moisture content from 64 to 3.3 percent in 55 minutes. 4. Shrinkage during press drying were 20.4 percent in thickness direction and 2.5 percent in width direction. Recovery on equilibrium conditioning at 65 percent relative humidity and temperature of $20^{\circ}C$. were 11.4 percent in thickness direction and 49.4 percent in width direction. 5. Heartwood material developed severe honeycombing and moderate checking. The sapwood material dried without honeycombing, checking and collapse. All material kept wood flat.

  • PDF

Optimal Configuration of the Truss Structures by Using Decomposition Method of Three-Phases (3단계(段階) 분할기법(分割技法)에 의한 평면(平面)트러스 구조물(構造物)의 형상(形狀) 최적화(最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Song, Gi Beom
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.12 no.3
    • /
    • pp.39-55
    • /
    • 1992
  • In this research, a Three Level Decomposition technique has been developed for configuration design optimization of truss structures. In the first level, as design variables, behavior variables are used and the strain energy has been treated as the cost function to be maximized so that the truss structure can absorb maximum energy. For design constraint of the optimal design problem, allowable stress, buckling stress, and displacement under multi-loading conditions are considered. In the second level, design problem is formulated using the cross-sectional area as the design variable and the weight of the truss structure as the cost function. As for the design constraint, the equilibrium equation with the optimal displacement obtained in the first level is used. In the third level, the nodal point coordinates of the truss structure are used as coordinating variable and the weight has been taken as the cost function. An advantage of the Three Level Decomposition technique is that the first and second level design problems are simple because they are linear programming problems. Moreover, the method is efficient because it is not necessary to carry out time consuming structural analysis and techniques for sensitivity analysis during the design optimization process. By treating the nodal point coordinates as design variables, the third level becomes unconstrained optimal design problems which is easier to solve. Moreover, by using different convergence criteria at each level of design problem, improved convergence can be obtained. The proposed technique has been tested using four different truss structures to yield almost identical optimum designs in the literature with efficient convergence rate regardless of constraint types and configuration of truss structures.

  • PDF

An Estimation of Price Elasticities of Import Demand and Export Supply Functions Derived from an Integrated Production Model (생산모형(生産模型)을 이용(利用)한 수출(輸出)·수입함수(輸入函數)의 가격탄성치(價格彈性値) 추정(推定))

  • Lee, Hong-gue
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.47-69
    • /
    • 1990
  • Using an aggregator model, we look into the possibilities for substitution between Korea's exports, imports, domestic sales and domestic inputs (particularly labor), and substitution between disaggregated export and import components. Our approach heavily draws on an economy-wide GNP function that is similar to Samuelson's, modeling trade functions as derived from an integrated production system. Under the condition of homotheticity and weak separability, the GNP function would facilitate consistent aggregation that retains certain properties of the production structure. It would also be useful for a two-stage optimization process that enables us to obtain not only the net output price elasticities of the first-level aggregator functions, but also those of the second-level individual components of exports and imports. For the implementation of the model, we apply the Symmetric Generalized McFadden (SGM) function developed by Diewert and Wales to both stages of estimation. The first stage of the estimation procedure is to estimate the unit quantity equations of the second-level exports and imports that comprise four components each. The parameter estimates obtained in the first stage are utilized in the derivation of instrumental variables for the aggregate export and import prices being employed in the upper model. In the second stage, the net output supply equations derived from the GNP function are used in the estimation of the price elasticities of the first-level variables: exports, imports, domestic sales and labor. With these estimates in hand, we can come up with various elasticities of both the net output supply functions and the individual components of exports and imports. At the aggregate level (first-level), exports appear to be substitutable with domestic sales, while labor is complementary with imports. An increase in the price of exports would reduce the amount of the domestic sales supply, and a decrease in the wage rate would boost the demand for imports. On the other hand, labor and imports are complementary with exports and domestic sales in the input-output structure. At the disaggregate level (second-level), the price elasticities of the export and import components obtained indicate that both substitution and complement possibilities exist between them. Although these elasticities are interesting in their own right, they would be more usefully applied as inputs to the computational general equilibrium model.

  • PDF