• Title, Summary, Keyword: enzymatic hydrolysis

Search Result 673, Processing Time 0.05 seconds

Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials(III) - Recycling and Reutilization of Cellulase Enzyme - (목질 재료의 자기가수분해 및 효소당화에 관한 연구 (Ⅲ) - Cellulase 효소의 회수 및 재사용 -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.45-51
    • /
    • 1989
  • A major problem in the enzymatic hydrolysis of lignocellulosic substrates is the very strong bonding of cellulase to lignin and even cellulose in the hydrolysis residues. This phenomenon inhibits recycle of the cellulase which is a major expense of the enzymatic hydrolysis process. In this paper, autohydrolyzed wood was delignified by two-stage with a 0.3% Na OH extraction and oxygen-alkali bleaching and was subjected to enzymatic hydrolysis with cellulase. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method. the first recycling showed relatively high hydrolysis rate of 97.4%. Even at the third recycle. hydrolysis rate was 86.7 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted very high hydrolysis rate(97.0-97.7%). Even the third recycling showed about 94.2%. Authoydrolysis of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a substrate for enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels (II) - The Effect of Delignification Treatment on the Enzymatic Hydrolysis of Steam - Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究)(II) - 탈(脫)리그닌처리가 폭쇄처리재(爆碎處理材)의 효소적(酵素的) 당화(糖化)에 미치는 영향(影響) -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.18-25
    • /
    • 1990
  • As polysaccharides in lignocellulosic materials are encrusted with aromatic lignin molecules and have high crystallinity, these require pretreatment to improve their digestability by cellulolytic enzymes. Though a number of pretreatment methods have been proposed, the steam explosion process is evaluated as a promising method. This study was performed to investigate the effect of delignification treatment by alkali, methanol and the others on the enzymatic hydrolysis. Delignification treatment resulted in great increase rate in enzymatic hydrolysis. Concerning to the effect of delignication reagents on the enzymatic hydrolysis, methanol treatment was more effective than alkali in the case of oak wood. In pine wood, the delignification did not showed any significant enhancement of hydrolysis rate. Complete delignification by Alkali-Oxygen. Alkali treatment showed high saccharification rate of 99.5%.

  • PDF

Effects of Enzymatic Hydrolysis and Concentrations of Sugar and Salt on Kimchi Juice Fermentation of Outer Leaves of Chinese Cabbage (배추 겉잎을 이용한 김치쥬스 제조시 효소분해, 당, 소금농도가 발효에 미치는 영향)

  • 전윤기;윤석권;김우정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.788-793
    • /
    • 1997
  • Addition of sugar, enzymatic hydrolysis and salt concentration were evaluated for their effects on the changes in some characteristics of Kimchi juice during fermentation. The Kimchi juice was prepared by brining and grinding of outer layer leaves of chinese cabbage, one of the wastes products of Kimchi processing, followed by fermentation proceeded significantly faster. Addition of sucrose or glucose at the ange of 0.5~2.0 % also improved the fermentation but the concentration effect was little. Enzymatic hydrolysis on the brined cabbage prior to fermentation with a commercial polysaccharides hydrolases also increased the fermentation. However the solid concentration in Kimchi juice was rather decreased by higher concentration of NaCl and enzymatic hydrolysis. The reducing sugar content showed a rapid decrease from 24 hours of fermentation and the effect of enzymatic hydrolysis was little.

  • PDF

Enzymatic Hydrolysis Performance of Biomass by the Addition of a Lignin Based Biosurfactant

  • FATRIASARI, Widya;NURHAMZAH, Fajar;RANIYA, Rika;LAKSANA, R.Permana Budi;ANITA, Sita Heris;ISWANTO, Apri Heri;HERMIATI, Euis
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.651-665
    • /
    • 2020
  • Hydrolysis of biomass for the production of fermentable sugar can be improved by the addition of surfactants. In pulp and paper mills, lignin, which is a by-product of the pulping process, can be utilized as a fine chemical. In the hydrolysis process, lignin is one of the major inhibitors of the enzymatic breakdown cellulose into sugar monomer. Therefore, the conversion of lignin into a biosurfactant offers the opportunity to solve the waste problem and improve hydrolysis efficiency. In this study, lignin derivatives, a biosurfactant, was applied to enzymatic hydrolysis of various lignocellulosic biomass. This Biosurfactant can be prepared by reacting lignin with a hydrophilic polymer such as polyethylene glycol diglycidylethers (PEDGE). In this study, the effect of biosurfactants on the enzymatic hydrolysis of pretreated sweet sorghum bagasse (SSB), oil palm empty fruit bunch, and sugarcane trash with different lignin contents was investigated. The results show that lignin derivatives improve the enzymatic hydrolysis of the pretreated biomass with low lignin content, however, it has less influence on the enzymatic hydrolysis of other pretreated biomass with lignin content higher than 10% (w/w). The use of biosurfactant on SSB kraft pulp can increase the sugar yield from 45.57% to 81.49%.

Optimization of organosolv pretreatment with sulfuric acid for enhancing enzymatic hydrolysis of Pitch Pine (Pinus rigida)

  • Park, Na-Hyun;Kim, Hye-Yun;Gwak, Ki-Seob;Koo, Bon-Wook;Yeo, Hwan-Myeong;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.505-505
    • /
    • 2009
  • The object is to optimize the best condition of organosolv pretreatment process with sulfuric acid as a catalyst. As a material, Pitch pine (Pinus rigida) was ground and sieved through 40-mesh screen, and Celluclast and $\beta$-glucosidase were used as enzymes for enzymatic hydrolysis. Pretreatment processes were carried out in the minibomb, and 20 g of materials with 200 ml of 50% ethanol solution (v/v) with 1% sulfuric acid as a catalyst. Pretreatment temperature was varied from $150^{\circ}C$ to $190^{\circ}C$, and time was varied from 0 to 20 min. Then, residual materials were used for enzymatic hydrolysis. The best conditions were selected by estimating followed enzymatic hydrolysis rate and degradable rates after pretreatment process. The highest value of enzymatic hydrolysis rate was obtained as 55 - 60% at 160 and at $180^{\circ}C$, but the value decreased under more severe conditions. As the residual rates decreased under severe conditions, it infered that the decrease of sugar contents limits enzymatic hydrolysis rates. Combined with enzymatic hydrolysis rate, degradable rates and H-factors, the temperatures at $160^{\circ}C$ for 20 min and at $180^{\circ}C$ for 0 min were concluded as the optimized conditions where have the lowest H-factor value for considering energy input.

  • PDF

Characteristics of Enzymatic Hydrolysis of Sodium Hydroxide pretreated Suwon Poplar (NaOH 전처리된 현사시나무의 효소가수분해 특성)

  • 박영기;오정수
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.2
    • /
    • pp.20-27
    • /
    • 2001
  • An effective method for production of glucose was developed using enzymatic hydrolysis of Suwon poplar by the cellulase. Enzymatic hydrolysis of wood is the reaction to produce glucose from wood using enzyme which derives from microorganism. Glucose can be transferred easily to ethanol by fermentation. Ethanol is the starting material for producing acetone, butanol, citric acid and lactic acid. The mechanism of the enzymatic hydrolysis of cellulose are reasonably explained in terms of the sequential action of three different types of enzymes, endo-cellulase, ex-cellulase, and $\beta$ -glucosidase. The goal of this work was to investigate the cellulose hydrolysis pretreated polar with various concentration NaOH, the crystallinity of cellulose, lignin contents and the degree of hydrolysis.

  • PDF

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels(III) - Quantitative Recycling of Cellulase Enzyme in the Enzymatic Hydrolysis of Steam-Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究) (III) - 폭쇄(爆碎)처리재의 산소분해시(酸素分解時) Cellulase 산소(酸素)의 정량적(定量的) 회수(回收)에 관하여 -)

  • Cho, Nam-Seok;Lim, Chang-Suk;Lee, Jae-Sung;Park, Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 1991
  • Steam-exploded woods were delignified by two-stage with a 0.3% NaOH extraction and oxygen-alkali bleaching and were subjected to the enzymatic hydrolysis with cellulase enzyme. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method, The first recycling showed relatively high hydrolysis rate of 96.4%. Even at the third recycle, hydrolysis rate was 87.0 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted in very high hydrolysis rates, 96.8% and 95.0%, respectively. Even the third recycling showed about 93.6%. Steam-explosion treatment of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a excellant substrate for the enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Use of membrane separation in enzymatic hydrolysis of waste paper

  • Rad, Narges Milani;Mousavi, Seyed Mahmoud;Bahreini, Masoumeh;Saljoughi, Ehsan
    • Korean Journal of Chemical Engineering
    • /
    • v.34 no.3
    • /
    • pp.768-772
    • /
    • 2017
  • A three-stage process containing phosphoric acid pretreatment, enzymatic hydrolysis, and membrane filtration was performed on waste paper as a lignocellulosic material. In the first two stages, the effect of phosphoric acid concentration, enzyme loading, hydrolysis time, and substrate concentration on the amount of products was investigated. At the third stage using a proper membrane, the effect of substrate concentration and transmembrane pressure (TMP) on yield of the reducing sugars was studied. The novelty of the present study was to demonstrate the application of ultrafiltration membrane on the enzymatic hydrolysis process of waste paper. The reducing sugars concentration was determined by using the 3,5-dinitrosalicylic acid (DNS) reagent method. According to the results, a value of 0.5% was determined as the optimum concentration for phosphoric acid in the pretreatment stage. The reducing sugars yield was obtained as 67.4% in this concentration. Moreover, for the enzymatic hydrolysis of waste paper, the suitable amounts of cellulase enzyme loading and hydrolysis time were determined as 50 mg/g substrate and 48 h, respectively. In the filtration stage, increase of substrate concentration and decrease of TMP resulted in higher rejection of the reducing sugars. The experimental results revealed that the highest rejection was 19.2% at TMP of 3 bar and substrate concentration of 100 g/L.

The Production of Alcohol from Municipal Waste(II) - The Effects of Physical or Chemical Treatment on the Enzymatic Hydrolysis of Waste Paper - (도시 폐기물로부터 알코올 생산 (II) - 물리적, 화학적 전처리된 폐지의 효소가수분해 조건 검토 -)

  • Lim, Bu-Kug;Yang, Jae-Kyung;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 1997
  • The effects on the enzymatic hydrolysis of waste paper treated with physical or chemical treatment were investigated. To gain the higher saccharification rate, physical or chemical treatment are necessary in enzymatic conversion process of waste paper. The major deterrents to the effective utilization of waste paper for enzymatic conversion process are phenolic compounds, cellulose crystallinity and coating materials. In the enzymatic hydrolysis of waste paper, the deterrents through enzymatic conversion process can be eliminated by the physical or chemical treatment. This study was performed to obtain the optimal condition for enzymatic conversion process of non-treated waste paper and to review effects on enzymatic conversion process of waste paper treated with physical or chemical methods. In the aspect of saccharification rate, waste paper treated with 1.5% sodium hypochlorite was the most effective and in physical treatment methods, multi-stage treatment(autohydrolysis+refining treatment) was more effective than the other physical treatment.

  • PDF

Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis

  • Yoo, Sang-Hun;Chang, Yoon Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.338-347
    • /
    • 2016
  • The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G', G") of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities.