• Title, Summary, Keyword: elevated temperature

Search Result 1,400, Processing Time 0.04 seconds

Analysis of NRRO Caused by Ball Bearing in a HDD Spindle System at Elevated Temperature (볼 베어링에 의해 발생하는 HDD 회전축계 NRRO의 온도 상승에 따른 변화)

  • Kim, D.K.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9
    • /
    • pp.792-800
    • /
    • 2004
  • This research investigates the non-repeatable runout (NRRO) of a HDD spindle system at elevated temperature by analyzing the characteristics of a ball bearing and the natural vibration characteristics of a HDD spindle system due to the effect of elevated temperature. It shows that the elevated temperature results in the increase of the contact angle and the decrease of the deformation of the ball bearing in a HDD spindle system. The variation of bearing frequencies, which are dependent on the cosine function of contact angle, is almost negligible at elevated temperature. However, the decrease of bearing deformation at elevated temperature reduces the stiffness of the ball bearing and the natural frequencies of a HDD spindle system consequently. The latter has a significant effect on the amplitude and the frequency distribution of NRRO at elevated temperature.

Analysis of Notched Bar Tensile Tests for Inconel 617 at Room and Elevated Temperatures (Inconel 617 노치시편의 상온 및 고온 인장실험 해석)

  • Oh, Chang-Sik;Ma, Young-Wha;Yoon, Kee-Bong;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.1818-1823
    • /
    • 2007
  • In this paper, notched bar tensile tests of Inconel 617 were performed at room ($20^{\circ}C$) and elevated ($800^{\circ}C$) temperature. Finite element analyses are also performed. It is found that, at the room temperature, smooth bar tensile test results could be used to simulate notched bar tensile tests. However, at the elevated temperature, notched bar tensile test results can not be simulated from smooth bar tensile test results. Metallurgical examination reveals that strength weakening results from many cavities over the specimens for smooth bar test at the elevated temperature. "True" tensile properties at the elevated temperature is found using FE simulations. It also suggests that cautious should be taken to determine tensile properties of Inconel 617 at elevated temperatures using smooth bar tests.

  • PDF

Analysis of a Hydrodynamic Bearing of a HDD Spindle Motor Due to Elevated Temperature (온도변화에 의한 HDD 유체 동압 베어링의 특성 해석)

  • 김학운;김관수;장건희;이행수;김철순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.556-563
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature considering the variation of the clearance as well as the lubricant viscosity. Iterative finite element analysis of the heat conduction and the thermal deformation is performed to determine the viscosity and clearance of a hydrodynamic bearing due to elevated temperature until the temperature of the bearing area converges. Proposed method is verified by comparing the calculated temperature with the measured one in elevated surrounding temperature as well as in room temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearing of a HDD spindle motor. Once the viscosity and clearance of a hydrodynamic bearing of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature. It also shows that the variation of clearance due to elevated temperature is another important design consideration to affect the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor.

  • PDF

Analysis of a Bydrodynamic Bearing of a BDD Spindle Motor Due to Elevated Temperature (온도변화에 의한 HDD 유체 동압 베어링의 특성 해석)

  • Kim Kwan Soo;Kim Hak Woon;Lee Haeng Soo;Kim Chul Soon;Jang Gun Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5
    • /
    • pp.762-769
    • /
    • 2005
  • This paper presents a method to investigate the characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature considering the variation of the clearance as well as the lubricant viscosity. Iterative finite element analysis of the heat conduction and the thermal deformation is performed to determine the viscosity and clearance of a hydrodynamic bearing due to elevated temperature until the temperature of the bearing area converges. Proposed method is verified by comparing the calculated temperature with the measured one in elevated surrounding temperature as well as in room temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearing of a HDD spindle motor. Once the viscosity and the clearance of a hydrodynamic bearing of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of a hydrodynamic bearing of a HDB spindle motor due to elevated temperature. It also shows that the variation of clearance due to elevated temperature is another important design consideration to affect the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor

Elevated Temperature Design of KALIMER Reactor Internals Accounting for Creep and Stress-Rupture Effects

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.566-594
    • /
    • 2000
  • In most LMFBR(Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER(Korea Advanced Liquid MEtal Reactor) reactor internal strictures is carried out for normal operating conditions which have the operating temperature 53$0^{\circ}C$ and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME Code Case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects.

  • PDF

Ecophysiological responses of Quercus gilva, endangered species and Q. glauca to long-term exposure to elevated CO2 concentration and temperature

  • Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.203-212
    • /
    • 2012
  • The physiological effects of elevated $CO_2$ concentration and temperature were examined for Quercus gilva and Q. glauca grown under control (ambient $CO_2$ and temperature) and treatment (elevated $CO_2$ and temperature) conditions for 39 months. The objective of the study was to measure the long-term responses, in physiological parameters, of two oaks species exposed to elevated $CO_2$ and temperature. The photosynthetic rate of Q. gilva was found to be decreased, but that of Q. glauca was not significantly affected, after long-term exposure to elevated $CO_2$ and temperature. Stomatal conductance of Q. glauca was reduced by 21.7%, but that of Q. gilva was not significantly affected, by long-term exposure to $CO_2$ and temperature. However, the transpiration rate of the two oak species decreased. Water use efficiency of Q. gilva was not significantly affected by elevated $CO_2$ and temperature, while that of Q. glauca was increased by 56.6%. The leaves of Q. gilva grown under treatment conditions had an increased C:N ratio due to their reduced nitrogen content, while those of Q. glauca were not significantly affected by long-term exposure to elevated $CO_2$ and temperature. These results suggest that the long-term responses to elevated $CO_2$ and temperature between Q. gilva and Q. glauca are different, and that Q. gilva, the endangered species, is more sensitive to elevated $CO_2$ and temperature than Q. glauca.

Survival and Growth in Juvenile Abalone Haliotis discus hannai to Ocean Acidification and Elevated Temperature (해양 산성화 및 수온 상승 환경에서의 전복치패(Haliotis discus hannai)의 생존 및 성장)

  • Lee, Kyoung-Seon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.154-159
    • /
    • 2014
  • The increasing of atmospheric $CO_2$ are changing the pH (ocean acidification) and temperature of the sea. Although the effects of ocean acidification on calcifying organisms have well-documented, only a few studies have examined the combined effects of ocean acidification and elevated temperature. This study investigated the effects of ocean acidification and elevated temperature for 2100 on survival and growth of juvenile abalone, Haliotis discus hannai. Ocean acidification was simulated by bubbling $CO_2$ into seawater at concentrations of 1,000 and 1,500 ppm, and temperature was set at room temperature $+2^{\circ}C$. Neither $CO_2$ nor temperature had a significant effect on survival of abalone, while both significantly affected growth. There was no significant interaction between the two factors. Shell length can be used as a growth index of abalone to access the impacts of ocean acidification and elevated temperature.

Effects of Elevated $CO_2$ and Temperature on Competition between Rice and Echinochloa glabrescens Seedlings

  • Kim, Han-Yong
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • The objective of this study was to determine how elevated $CO_2$ and temperature affected early growth and competition between direct seeded rice (Oryza sativa) and a common paddy weed (Echinochloa glabrascens). By using temperature gradient chambers. Rice and E. glabrescens were grown for 5 weeks at ratios of 1:0. 3:1 and 0:1 at three temperatures ($16.4^{\circ}C,\;19.8^{\circ}C,\;and\;22.2^{\circ}C$) and either in ambient (361ppm) or elevated (566ppm) $CO_2$. For both species. elevated $CO_2$ had no effect on mainstem leaf number while air temperature had a slight positive effect which was greater in E. glabrescens than rice. With elevated $CO_2$ rice leaf area index and plant height increased alightly in all species combinations but no increases were observed for E. Glabuescens. For rice in all combinations. elevated $CO_2$ tended to increase the rot and total biomass much more than any other growth parameters: the increases in root and total biomass resulting from elevated $CO_2$ ranged from 16% to 40%. depending on air temperature. At the lowest temperature, the decrease in rice biomass in combination with E. glabrescens was significantly greater at elevated $CO_2$ (18%) than ambient $CO_2$ (3%). At the highest temperature, however, the decrease in rice biomass at elevated $CO_2$ (22%) was less than that at ambient $CO_2$ (36%). The competitive ability of rice as measured by the decrease in biomass when grown in combination with E. glabrescens depended strongly on root growth and/or allocation. These results suggest that at higher temperatures elevated $CO_2$ could enhance the competitive ability of direct seeded rice during early growth. However, at lower temperatures. the competitive ability of E. glabrescens seems to be greater.

  • PDF

Effects of Elevated $CO_2$ and Global Warming on Growth Parameters, Biomass Production and Its Partitioning of Rice ($CO_2$ 농도의 상승과 온난화환경이 수도의 생장, 물질생산 및 그 분배에 미치는 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.1
    • /
    • pp.80-85
    • /
    • 1998
  • The influence of elevated CO2 and temperature on growth parameters, biomass production and its partitioning of rice (Oryza sativa L.cv. Chukwangbyeo) were investigated in the three experiments (1991-1993). Rice plants were grown from transplanting to harvest at either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in combination with either four or seven temperature regimes ranging form ambient temperature (AT) to AT plus 3$^{\circ}C$.From transplanting to panicle initiation, crop growth rate (CGR) was enhanced by up to 27% with elevated CO2 , primarily due to an an increase in leaf area index. although net assimilatiion rate was also greater at elevated CO2. The effect of elevated CO2 varied with temperature. During the reproductive phase, CGR declined linearly with increased temperature, and was greater at elevated CO2 . Elevated CO2 increased final crop biomass and panicle weight 30% respectively at AT(27.6$^{\circ}C$ : 1991) . However, there was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was also no effect of CO2 on biomass pratitioning into vegetative and reproductive organs (harvest index)) at AT, although higher temperature could affect that by inducing spikelet sterility. These results suggest that elevated CO2 could enhance rice producivity througth promoted growth and biomass production , but its positive effects may be less at higher temperatures.

  • PDF

Effect of Elevated Carbon Dioxide Concentration and Temperature on Yield and Fruit Characteristics of Tomato (Lycopersicon esculentum Mill.) (이산화탄소 및 온도 상승이 토마토 수량 및 과실특성에 미치는 영향)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.428-434
    • /
    • 2008
  • The objective of this study is to investigate the effect of the level of $CO_2$ (370 and $650{\mu}mol\;mol^{-1}$) and temperature (ambient and ambient+$5^{\circ}C$) on tomato growth and fruit characteristics as affected by the application rate of N-fertilizer (68 and $204\;N\;kg\;ha^{-1}$), for the purpose of evaluating the influence of elevated $CO_2$ and temperature on tomato crop. The elevated atmospheric $CO_2$ and temperature increased the plant height and stem diameter for tomato crop, while the differences among the nitrogen(N) application rates were not significantly different. Under the elevated $CO_2$, temperature, and a higher N application rate, the biomass of aerial part increased. The fruit yield showed the same result as the biomass except for the elevated temperature. The elevated temperature made the size of fruit move toward the small, but the elevated $CO_2$ and the application of N-fertilizer were vice versa. The sugar content and pH of fruit juice were affected by nitrogen application rate, but not by the elevated $CO_2$ and temperature. These results showed that both the elevated $CO_2$ and temperature stimulated the vegetative growth of aerial parts for tomato, but each effects on the yield of fruit showed an opposite result between the elevated temperature and $CO_2$. In conclusion, the elevated $CO_2$ increased tomato yield and the ratio of large size of fruit, but the elevated temperature did not. Therefore, to secure the productivity of tomato as nowadays in future environment, it will need to develop new breeder as high temperature-tolerable tomato species or new type of cropping systems.