• 제목/요약/키워드: electrolyzer

Search Result 51, Processing Time 0.525 seconds

Design and Control Method of Full-bridge DC-DC Converter for Electrolyzer (전기분해수조를 위한 풀-브릿지 DC-DC 컨버터의 설계와 제어 방법)

  • Lee, Byoung-Seoup;Yoon, Tae-Min;Kim, Jong-Hoon;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.552-559
    • /
    • 2015
  • Hydrogen is commonly used in many industrial field. However, hydrogen should be filled in a high pressure container to use it. Therefore, many researches have been conducted about an electrolyzer. The operating principle of the electrolyzer is that the electrolyzer can separate water molecules into hydrogen and oxygen. To use the electrolyzer, a power conversion system is needed because the current of the electrolyzer increases exponentially depending on the voltage of the electrolyzer. Thus, this paper proposes the power conversion system for the electrolyzer using a full-bridge DC-DC converter topology.

Operation of Photovoltaic Generation System with Battery and Electrolyzer (Battery와 Electrolyzer를 이용한 태양광 발전시스템 운영)

  • Gang, Gi-Hyeok;Kim, Yun-Seong;Loc, Nguyen Khanh;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1994-2000
    • /
    • 2008
  • The output power of photovoltaic(PV) generation system is strongly affected by weather conditions. To make up for the defect of solar energy, energy storages such as battery and electrolyzer are usually integrated with photovoltaic cell. This paper focuses on the way to store energy surplus with battery and electrolyzer and to provide energy with battery. Photovoltaic generation system is modeled with PV cell, DC/DC converter, DC/AC inverter, battery and electrolyzer. The operation algorithm to regulate PV output power with battery and electrolyzer is suggested. The simulation results show that battery and electrolyzer effectively cooperate with each other to compensate the fluctuation of PV generation system.

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.

A study on advanced control of electrolyzer process (전해조 공정의 고급제어에 관한 연구)

  • 이종구;박선원;문상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.76-80
    • /
    • 1991
  • This paper presents a merit of feedforward Dyamic Matrix Control(DMC) for electrolyzer process. The electrolyzer consists of anode part and cathode part that are separated by ion membrane. As the electolyzer process consumes a large amount of electricity, electric power change is inevitable in order to take advantage of the cheaper electricity during night. But the electric power change makes the electrolyzer control difficult because the electric power change affect the dynamics of the process. Feedforward DMC treats the electric power change as a load disturbance and gives the weighting value to the disturbance prediction part in the DMC algorithm. Feedforward DC shows better regulation performance than PID control and feedforward-feedback control for electrolyzer process.

  • PDF

A study on the power plant system combined with PEM fuel cell and the wasted hydrogen from the sea water electrolyzer of nuclear power plants (원자력 발전소의 해수전해설비 폐수소를 활용한 PEM 연료전지 발전 시스템에 관한 연구)

  • Choi, Jongwon;Lee, Juhyung;Cha, Sukwon;Kim, Minsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.124.2-124.2
    • /
    • 2010
  • Generally, a coolant of the nuclear power plant is manufactured by electrolyzing the sea water near the plant for making the sodium hypochlorite(NaOCl), which is used for sterilizing the bacteria and the shellfishes sticking to the drains or the pumps at the outlet of the cooling system due to $8-10^{\circ}C$ warmer temperature than the inlet sea water. During manufacturing the sodium hypochlorite, the hydrogen with the high purity is also produced at the anode side of the electrolyzer. This paper describes a novel power plant system combined with the polymer electrolyte membrane(PEM) fuel cell, the wasted hydrogen from the sea water electrolyzer and the wasted heat of the nuclear power plant. The present status over the exhausted hydrogen at twenty nuclear power plants in Korea was investigated in this study, from which an available power generation is estimated. Furthermore, the economic feasibility of the PEM fuel cell power plant is also evaluated by a current regulations over the power production and exchange using a renewable energy shown in Korea Power Exchange(KRX).

  • PDF

Development of WT-FC Hybrid System for Off-Grid (오프그리드용 풍력-연료전지 하이브리드 시스템 개발)

  • Choi, Jong-Pil;Park, Nae-Chun;Kim, Sang-Hun;Kim, Byeong-Hee;Nam, Yun-Su;Yu, Neung-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.383-386
    • /
    • 2007
  • This paper describes the design and integration of the wind- fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), storage system and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. The hydrogen is compressed and stored in high pressure tank by hydrogen gas booster system.

  • PDF

Method of Harmonic Reduction for Large Electrolyzer Facility using 6-Pulse Converter (6펄스 컨버터를 사용한 대용량 전해조 설비의 고조파 저감기법)

  • Min, Wan-Ki;Kim, Nam-Oh;Min, Byoung-Guk;Cho, Geum-Bae;Seo, Gil-Mo
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.187-190
    • /
    • 2007
  • To improve the power factor and reduce the harmonic contents of the system, the design of tunned filters for six-pulse thyrister converter which is used by electrolyzer system is discussed in this paper. Tunned filters are added to high-power rectifiers to keep the line current distortion within allowable limits and to improve the rectifier power factor. For electrolyzer system, the design procedure of tunned filters of AC 14.4kV power system are proposed by dynamic simulation. It is shown that these harmonic filters can meet most operational requirments. The the proposed design procedure is verified with the simulation and experimental results.

  • PDF

Fundamental Study of Unit Proton Exchange Membrane Electrolysis for Realtime Detection of Tritium (실시간 삼중수소 검출을 위한 단위 양성자 교환 막 전기분해 기초연구)

  • CHAE, JONGMIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.226-234
    • /
    • 2018
  • Even though the nuclear power plants has many advantages, safety issues of nuclear power plants are crucial factors of reliable operation. A tritium detector is a useful sensor to analyze amount of exposed radiation from the nuclear power plants. Currently, concentration of underwater tritium is measured precisely but it takes very long time. Since electrolysis is extracted hydrogen from the coolant of nuclear power plant, it can motivate to develop new type of real-time sensor. In this study, Proton Exchange Membrane (PEM) electrolyzer is studied for candidate as preprocessor of real-time tritium detector. Characteristics of the unit PEM electrolyzer were experimentally investigated. A simulation model is developed to understand physical behavior of unit PEM electrolyzer under dynamic operation.

The management of Photovoltaic Generator system with Battery and Electrolyzer (Battery와 Electrolyzer를 이용한 태양광 발전 시스템 운영)

  • Gang, Gi-Hyeok;Kim, Yun-Seong;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1130-1131
    • /
    • 2008
  • 현재는 화석연료에서 신재생에너지로 에너지 패러다임이 변화하고 있는 시점이며, 신재생에너지를 보다 효율적으로 운영하여 효율성을 높이기 위해 많은 연구가 이루어지고 있다. 전기 에너지는 생산과 동시에 소비해야 한다는 특성을 가지고 있으며, 그 중 태양광 발전과 같은 신재생에너지원은 기후요인에 의해 출력이 결정되기 때문에 수요전력보다 공급전력이 많아 잉여전력이 생기거나 공급전력보다 수요전력이 많아 부족전력이 발생하여 전력품질을 악화시킬 수 있다는 단점이 있다. 본 논문에서는 이런 태양광 발전의 단점을 보완하기 위해서는 잉여전력이 발생한 경우는 Battery와 Electrolyzer를 이용하여 에너지를 저장하고 부족전력이 발생한 경우는 Battery를 이용하여 보상하는 방법을 제안하였다.

  • PDF

Continuous Decomposition of Ammonia by a Multi Cell-Stacked Electrolyzer with a Self-pH Adjustment Function (자체 pH 조정 기능을 갖는 다단 전해조에 의한 암모니아의 연속식 분해)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Geun-Il;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.352-359
    • /
    • 2005
  • This work has studied the changes of pH in both of anodic and cathodic chambers of a divided cell due to the electrolytic split of water during the ammonia decomposition to nitrogen, and has studied the continuous decomposition characteristics of ammonia in a multi-cell stacked electrolyzer. The electrolytic decomposition of ammonia was much affected by the change of pH of ammonia solution which was caused by the water split reactions. The water split reaction occurred at pH of less than 8 in the anodic chamber with producing proton ions, and occurred at pH of more than 11 in the cathodic chamber with producing hydroxyl ions. The pH of the anodic chamber using an anion exchange membrane was sustained to be higher than that using a cation exchange membrane, which resulted in the higher decomposition of ammonia in the anodic chamber. By using the electrolytic characteristics of the divided cell, a continuous electrolyzer with a self-pH adjustment function was newly devised, where a portion of the ammonia solution from a pHadjustment tank was circulated through the cathodic chambers of the electrolyzer. It enhanced the pH of the ammonia solution fed from the pH-adjustment tank into the anodic chambers of the electrolyzer, which caused a higher decomposition yield of ammonia. And then, based on the electrolyzer, a salt-free ammonia decomposition process was suggested. In that process, ammonia solution could be continuously decomposed into the environmentally-harmless nitrogen gas up to 83%, when chloride ion was added into the ammonia solution.