• Title, Summary, Keyword: dose calculation

Search Result 459, Processing Time 0.04 seconds

Dosimetric Validation of the Acuros XB Advanced Dose Calculation Algorithm for Volumetric Modulated Arc Therapy Plans

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.180-188
    • /
    • 2016
  • Acuros XB advanced dose calculation algorithm (AXB, Varian Medical Systems, Palo Alto, CA) has been released recently and provided the advantages of speed and accuracy for dose calculation. For clinical use, it is important to investigate the dosimetric performance of AXB compared to the calculation algorithm of the previous version, Anisotropic Analytical Algorithm (AAA, Varian Medical Systems, Palo Alto, CA). Ten volumetric modulated arc therapy (VMAT) plans for each of the following cases were included: head and neck (H&N), prostate, spine, and lung. The spine and lung cases were treated with stereotactic body radiation therapy (SBRT) technique. For all cases, the dose distributions were calculated using AAA and two dose reporting modes in AXB (dose-to-water, $AXB_w$, and dose-to-medium, $AXB_m$) with same plan parameters. For dosimetric evaluation, the dose-volumetric parameters were calculated for each planning target volume (PTV) and interested normal organs. The differences between AAA and AXB were statistically calculated with paired t-test. As a general trend, $AXB_w$ and $AXB_m$ showed dose underestimation as compared with AAA, which did not exceed within -3.5% and -4.5%, respectively. The maximum dose of PTV calculated by $AXB_w$ and $AXB_m$ was tended to be overestimated with the relative dose difference ranged from 1.6% to 4.6% for all cases. The absolute mean values of the relative dose differences were $1.1{\pm}1.2%$ and $2.0{\pm}1.2%$ when comparing between AAA and $AXB_w$, and AAA and $AXB_m$, respectively. For almost dose-volumetric parameters of PTV, the relative dose differences are statistically significant while there are no statistical significance for normal tissues. Both $AXB_w$ and $AXB_m$ was tended to underestimate dose for PTV and normal tissues compared to AAA. For analyzing two dose reporting modes in AXB, the dose distribution calculated by $AXB_w$ was similar to those of AAA when comparing the dose distributions between AAA and $AXB_m$.

Dose Distribution&Calibration in HDR Intracavitary Irradiation for Uterine Cervical Cancer (자궁경부암의 강내치료를 위한 선량측정)

  • 김진기;김정수;김형진;권형철
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • Dose distribution of HDR-RALS source represents an inverse square law as the distance. Difference of measurement value and calculation value according of brachytherapy. Therefore, in HDR-RALS dose calibration and calculation have an important effect in treatment of uterine cervical cancer and absorbed dose of interesting points. In intracavitary therapy, particula attention is paid for precise determination of the doses to be applied. In this report, we have discussed that the calibration of a HDR-RALS, differences between calculation dose use of isodose chart and measurement in rectum. Dose rate calibration of radiation sources are obtained from air kerma and Г factor with calibraed ion chamber for cobalt source. and used semiconductor detector for compared with measurement in phantom. Eighteen patients were treated with a HDR-RALS for intrcavitarty irradiation (ICR) using a cobalt-cesium source. Repoductivity of dose measurements were 0.3 -1.1% in phantom. The means of dose distribution was -6- +21% between calculation of isodose chart and measurement of recyum, and was same mean value upper 6.3% in measurement value than calculation does.

  • PDF

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm (선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석)

  • Kim, Dae-Sup;Yoon, In-Ha;Lee, Woo-Seok;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • Purpose: Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. Materials and Methods: The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, $30{\times}30{\times}30$ cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. Results: In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. Conclusion: In this study, do not judge the rightness of the dose calculation algorithm. However, analyzing the characteristics of the dose distribution represented by each algorithm, especially, a method for the optimal treatment plan can be presented when make a treatment plan. by considering optimized algorithm factors of the IMRT or VMAT that needs to optimization make a treatment plan.

  • PDF

The Effects of the Statistical Uncertainties in Monte Carlo Photon Dose Calculation for the Radiation Therapy (방사선 치료를 위한 몬테칼로 광자선 선량계산 시 통계적 불확실성 영향 평가)

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Cho, Byung-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.105-115
    • /
    • 2004
  • The Monte Carlo simulation requires very much time to obtain a result of acceptable accuracy. Therefore we should know the optimum number of history not to sacrifice time as well as the accuracy. In this study, we have investigated the effects of statistical uncertainties of the photon dose calculation. BEAMnrc and DOSXYZnrc systems were used for the Monte Carlo dose calculation and the case of mediastinum was simulated. The several dose calculation result from various number of histories had been obtained and analyzed using the criteria of isodose curve comparison, dose volume histogram comparison(DVH) and root mean-square differences(RMSD). Statistical uncertainties were observed most evidently in isodose curve comparison and RMSD while DVHs were less sensitive. The acceptable uncertainties $(\bar{{\Delta}D})$ of the Monte Carlo photon dose calculation for the radiation therapy were estimated within total 9% error or 1% error for over than $D_{max}/2$ voxels or voxels at maximum dose.

Dose Distribution of Rectum in the treatment of Uterine Cervical Cancer using Remote Afterloading System (RALS시행시 선원의 거리 이동및 직장선량에 관한 계산치와 측정치의 비교연구)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.67-74
    • /
    • 1994
  • Dose distribution of point source represents an inverse square law as the distance, Difference of measurement value and calculation value according to moving distance of radiation source show very large error in dose calculation of Brachytherapy. Therefore, in RALS of high dose rate, dose calculation have an important effect in treatment of uterine cervix cancer and recurrent rate. In this paper, authors measured moving distance of radiation source carrying out RALS. And we measured Rectum dose compared with calculationdose.

  • PDF

Influence of Intravenous Contrast Medium on Dose Calculation Using CT in Treatment Planning for Oesophageal Cancer

  • Li, Hong-Sheng;Chen, Jin-Hu;Zhang, Wei;Shang, Dong-Ping;Li, Bao-Sheng;Sun, Tao;Lin, Xiu-Tong;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1609-1614
    • /
    • 2013
  • Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.

Development of 2.5D Electron Dose Calculation Algorithm (2.5D 전자선 선량계산 알고리즘 개발)

  • 조병철;고영은;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.

  • PDF

Application of Variance Reduction Techniques for the Improvement of Monte Carlo Dose Calculation Efficiency (분산 감소 기법에 의한 몬테칼로 선량 계산 효율 평가)

  • Park, Chang-Hyun;Park, Sung-Yong;Park, Dal
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2003
  • The Monte Carlo calculation is the most accurate means of predicting radiation dose, but its accuracy is accompanied by an increase in the amount of time required to produce a statistically meaningful dose distribution. In this study, the effects on calculation time by introducing variance reduction techniques and increasing computing power, respectively, in the Monte Carlo dose calculation for a 6 MV photon beam from the Varian 600 C/D were estimated when maintaining accuracy of the Monte Carlo calculation results. The EGSnrc­based BEAMnrc code was used to simulate the beam and the EGSnrc­based DOSXYZnrc code to calculate dose distributions. Variance reduction techniques in the codes were used to describe reduced­physics, and a computer cluster consisting of ten PCs was built to execute parallel computing. As a result, time was more reduced by the use of variance reduction techniques than that by the increase of computing power. Because the use of the Monte Carlo dose calculation in clinical practice is yet limited by reducing the computational time only through improvements in computing power, introduction of reduced­physics into the Monte Carlo calculation is inevitable at this point. Therefore, a more active investigation of existing or new reduced­physics approaches is required.

  • PDF