• 제목, 요약, 키워드: dose calculation

검색결과 459건 처리시간 0.043초

비 인두암 체적 조절 호형 방사선 치료의 선량 계산 격자 크기에 따른 선량 체적 지수와 방사선 생물학적 지수의 평가 (Evaluation of Dose Volume and Radiobiological Indices by the Dose Calculation Grid Size in Nasopharyngeal Cancer VMAT)

  • 강동진;정재용;신영주;민정환;심재구;박소현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • v.43 no.4
    • /
    • pp.265-272
    • /
    • 2020
  • The purpose of this study was to investigate the dose-volume indices and radiobiological indices according to the change in dose calculation grid size during the planning of nasopharyngeal cancer VMAT treatment. After performing the VMAT treatment plan using the 3.0 mm dose calculation grid size, dose calculation from 1.0 mm to 5.0 mm was performed repeatedly to obtain a dose volume histogram. The dose volume index and radiobiological index were evaluated using the obtained dose volume histogram. The smaller the dose calculation grid size, the smaller the mean dose for CTV and the larger the mean dose for PTV. For OAR of spinal cord, brain stem, lens and parotid gland, the mean dose did not show a significant difference according to the change in dose calculation grid size. The smaller the grid size, the higher the conformity of the dose distribution as the CI of the PTV increases. The CI and HI showed the best results at 3.0 mm. The smaller the dose calculation grid size, the higher the TCP of the PTV. The smaller the dose calculation grid size, the lower the NTCP of lens and parotid. As a result, when performing the nasopharynx cancer VMAT plan, it was found that the dose calculation grid size should be determined in consideration of dose volume index, radiobiological index, and dose calculation time. According to the results of various experiments, it was determined that it is desirable to apply a grid size of 2.0 - 3.0 mm.

Microcomputer를 이용한 근접조사 장치의 선량분포 계산 (Calculation of Dobe Distributions in Brachytherapy by Personal Microcomputer)

  • 추성실;박창윤
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 1984
  • In brachytherapy, it is important to determine the positions of the radiation sources which are inserted into a patient and to estimate the dose resulting from the treatment. Calculation of the dose distribution throughout an implant is so laborious that it is rarely done by manual methods except for model cases. It is possible to calculate isodose distributions and tumor doses for individual patients by the use of a microcomputer. In this program, the dose rate and dose distributions are calculated by numerical integration of point source and the localization of radiation sources are obtained from two radiographs at right angles taken by a simulator developed for the treatment planning. By using microcomputer for brachytherapy, we obtained the result as following 1. Dose calculation and irradiation time for tumor could be calculated under one or five seconds after input data. 2. It was same value under$\pm2\%$ error between dose calculation by computer program and measurement dose. 3. It took about five minutes to reconstruct completely dose distribution for intracavitary irradiation. 4. Calculating by computer made remarkly reduction of dose errors compared with Quimby's calculation in interstitial radiation implantation. 5. It could calculate the biological isoffect dose for high and low dose rate activities.

  • PDF

Lung SABR plan시 AAA의 Calculation resolution 변화에 의한 Target dose 영향 연구 (Target dose study of effects of changes in the AAA Calculation resolution on Lung SABR plan)

  • 김대일;손상준;안범석;정치훈;유숙현
    • 대한방사선치료학회지
    • /
    • v.26 no.2
    • /
    • pp.171-176
    • /
    • 2014
  • 목 적 : Lung SABR plan 에서 AAA의 calculation grid를 변화시켜 선량변화를 분석하고 그에 따른 영향을 연구하여 적절한 적용 방안에 대해 고찰한다. 대상 및 방법 : 모든 plan에 이용된 4D CT image는 Brilliance Big Bore CT(Philips, Netherlands)에서 촬영되었으며 10 건의 Lung SABR plan($Eclipse^{TM}$ ver 10.0.42, Varian, the USA)에서 anisotropic analytic algorithm (AAA, ver. 10, Varian Medical Systems, Palo Alto, CA, USA)을 이용하여 각각 1.0, 3.0, 5.0 mm의 calculation grid로 계산하였다. 결 과 : 10 건의 Lung SABR plan에서 1.0 mm calculation grid를 사용한 경우 $V_{98}$이 각각 처방선량의 약 $99.5{\pm}1.5%$ 였으며 Dmin이 각각 처방선량의 약 $92.5{\pm}1.5%$ 였고 Homogeneity Index(HI)는 약 $1.0489{\pm}0.0025$로 나타났다. 3.0 mm calculation grid를 사용한 경우 $V_{98}$이 각각 처방선량의 약 $90{\pm}4.5%$였으며, Dmin이 각각 처방선량의 약 $87.5{\pm}3%$ 였고 HI가 약 $1.07{\pm}1$로 나타났다. 5.0 mm calculation grid를 사용한 경우 $V_{98}$이 각각 처방선량의 약 $63{\pm}15%$ 였으며, Dmin이 각각 처방선량의 약 $83{\pm}4%$ 였고 HI가 약 $1.13{\pm}0.2$로 나타났다. 결 론 : 1.0 mm calculation grid의 계산 시간이 3.0 mm, 5.0 mm 보다 오래 걸렸지만 grid의 간격이 좁을수록 상대적으로 작은 PTV를 갖는 plan의 정확성을 향상시키는 것으로 나타났다. 또한 Lung과 같이 비교적 넓게 퍼져 있으며 밀도가 낮은 장기의 작은 PTV를 치료해야 하는 경우에는 1.0 mm의 calculation grid를 사용하는 것이 좋을 것으로 사료된다.

피폭선량 산출을 통한 피부입사선량 계산: 머리 및 손목을 중심으로 (Entrance Surface Dose according to Dose Calculation : Head and Wrist)

  • 성호진;한재복;송종남;최남길
    • 대한방사선기술학회지:방사선기술과학
    • /
    • v.39 no.3
    • /
    • pp.305-312
    • /
    • 2016
  • 본 연구에서는 진단용 X선 검사에서 환자에게 피폭되는 두부 및 사지를 다양한 선량 계산법을 통해 실측 선량과 비교 실험하였다. 또한 촬영 장비의 형태, 장비 설정조건, X선의 용량, X선관과 환자와의 거리, X선 후방산란차이 등을 고려한 새로운 계산 방법을 제시하여 피폭선량을 산출하였다. 그 결과 피부입사선량이 기존의 선량 계산법보다 실측과의 오차가 줄어들었으며, 환자가 피폭되는 선량을 쉽게 계산할 수 있었고 의료선량 평가가 이루어지게 되어 방사선 관련 종사자들의 의료 선량 관리가 더욱 수월해지는 계기가 될 것으로 사료된다.

Space Radiation Shielding Calculation by Approximate Model for LEO Satellites

  • Shin Myung-Won;Kim Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Two approximate methods for a cosmic radiation shielding calculation in low earth orbits were developed and assessed. Those are a sectoring method and a chord-length distribution method. In order to simulate a change in cosmic radiation environments along the satellite mission trajectory, IGRF model and AP(E)-8 model were used. When the approximate methods were applied, the geometrical model of satellite structure was approximated as one-dimensional slabs, and a pre-calculated dose-depth conversion function was introduced to simplify the dose calculation process. Verification was performed with mission data of KITSAT-1 and the calculated results were also compared with detailed 3-dimensional calculation results using Monte Carlo calculation. Dose results from the approximate methods were conservatively higher than Monte Carlo results, but were lower than experimental data in total dose rate. Differences between calculation and experimental data seem to come from the AP-8 model, for which it is reported that fluxes of proton are underestimated. We confirmed that the developed approximate method can be applied to commercial satellite shielding calculations. It is also found that commercial products of semi-conductors can be damaged due to total ionizing dose under LEO radiation environment. An intensive shielding analysis should be taken into account when commercial devices are used.

BENCHMARK CALCULATION OF CANDU END SHIELDING SYSTEM

  • Gyuhong Roh;Park, Hangbok
    • 한국원자력학회:학술대회논문집
    • /
    • /
    • pp.618-623
    • /
    • 1998
  • A shielding analysis was performed for the end shield of CANDU 6 reactor. The one-dimensional discrete ordinate code ANISN with a 38-group neutron-gamma library, extracted from DLC-37D library, was used to estimate the dose rate for the natural uranium CANDU reactor. For comparison MCNP-4B calculation was performed for the same system using continuous, discrete and multi-group libraries. The comparison has shown that the total dose rate of the ANISN calculation agrees well with that of the MCNP calculation. However, the individual dose rate (neutron and gamma) has shown opposite trends between AMISN and MCNP estimates, which may require a consistent library generation for both codes.

  • PDF

Voxel 머리팬텀 제작 및 붕소중성자포획요법 선량계산에의 응용 (Construction of voxel head phantom and application to BNCT dose calculation)

  • 이춘식;이춘익;이재기
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • 해부학적으로 단순한 수학적인형팬텀의 한계를 극복하기 위한 voxel 머리팬텀을 제작하고 BNCT(Boron Neutron Capture Therapy) 시행 시 선량분포를 계산하였다. 일반목적 몬테칼로 코드인 MCNP4B의 반복구조 알고리즘을 이용하여 voxel 몬테칼로 계산체계를 수립하였고 두 가지 물질로 구성된 예시적 voxel 팬텀과 기하체조합팬텀의 계산값 비교를 통해 계산체계를 검증하였다. 미국 NLM(National Library of Medicine)에서 제공하는 VHP man 인체단층사진에 대한 분할 및 색인작업을 통해 voxel 머리팬텀을 제작하여 AP 및 PA 방향에서 입사하는 넓고 평행한 광자 및 중성자빔에 대한 선량값을 MIRD 팬텀의 계산값과 비교한 결과 중성자빔 AP 방향조사 시 MIRD 팬텀에서는 볼 수 없는 안구로 인한 중성자 감쇠현상을 확인할 수 있었다. 3차원 정밀계산이 필요한 BNCT 시술시 선량분포계산을 위해 뇌 중앙에 직경 5cm의 구형 뇌종양 체적을 정의하고 뇌와 종양의 붕소 함량을 조정하여 10keV 및 40keV 상부입사 중성자에 의한 장기별 흡수선량을 계산한 결과 종양에 $30{\mu}g/g$, 정상세포에 $3{\mu}g/g$의 붕소를 주입한 경우 붕소함량이 없을 때에 비해 2배 가량 큰 선량을 보였다. 본 연구를 통해 voxel몬테칼로기법을 이용한 선량평가체계를 수립하였고 정밀한 선량계산을 필요로 하는 치료방사선분야 선량계산에 실제 인체에 가까운 voxel팬텀의 응용가능성을 제시하였다.

  • PDF

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • 한국의학물리학회:학술대회논문집
    • /
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

2.5D 광자선 선량계산 알고리즘 개발 (Development of 2.5D Photon Dose Calculation Algorithm)

  • 조병철;오도훈;배훈식
    • 한국의학물리학회지:의학물리
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • 본 연구에서는 외부조사 광자선에 대한 3차원 선량계산 알고리즘 모델을 개발하기 위한 기초 연구로서 기존의 2D 선량 계산 알고리즘을 확장시켜 비동일 평면 조사가 가능한 2.5D 선량계산 모델을 개발하였다. 이를 위해 3차원 치료계획 및 선량계산에 적합하도록 환자 및 조사빔에 대한 3차원 좌표계 시스템을 정의하고, 이들 간의 좌표변환식을 유도하였다. 선량계산 알고리즘으로는 "Clarkson-Cunningham" 의 2D 광자선량 계산 알고리즘을 3차원으로 확장시켜 정형 조사면 및 비정형 조사면에 대한 선량계산과 wedge filter에 대한 선량계산이 가능하도록 하였고, Batho 방식을 적용하여 비 균질 보정을 구현하였다. 선량계산의 정확도를 평가하기 위해, AAPM TG #23 에 제시된 절차에 따라 자료에 제시된 4MV 광자선에 대한 실험 값과 본 연구에서 계산된 결과를 비교한 결과, 정형조 사면에 대한 PDD(percent depth dose)는 buildup 영역을 제외하면 $\pm$1% 이내, 비정형 조사면의 경우 $\pm$3% 이내에서 실험값과 일치하였다. 또한, wedge filter에 대한 PDD 및 profile은 $\pm$3% 이내, 45$^{\circ}$ oblique 입사빔에 대한 선량은 $\pm$4% 이내에서 실험값과 일치하였다. 비균질 보정의 경우 Lung/water 경계에서 7% 과소 평가되었고, Bone/water 경계에서 3% 과대 평가되는 것으로 나타났다. 이들 결과를 종합해 볼 때, 비균질 보정을 제외하고는 비교적 정확하게 선량을 계산하는 것으로 평가되었다. 추후 대부분의 상용 2.5D 치료계획시스템 (radiation treatment planning system; RTP)들이 비균질 보정 방법으로 사용하고 있는 Equivalent TAR(tissue-air ratio) 방식을 구현시키고자 하며, 본 연구에서 구현된 선량계산 모듈을 교육 및 연구용으로 활용할 수 있을 것으로 기대 한다.것으로 기대 한다.

  • PDF

핵의학검사의 환자 유효선량 계산 프로그램 제작에 관한 연구 (Study on Development of Patient Effective Dose Calculation Program of Nuclear Medicine Examination)

  • 선종률;길종원
    • 한국산학기술학회논문지
    • /
    • v.18 no.3
    • /
    • pp.657-665
    • /
    • 2017
  • 본 연구의 목적은 핵의학검사를 하는 수검자(환자)의 유효선량(mSv)을 손쉽게 산출할 수 있는 전용 프로그램을 제작 보급하여 핵의학검사의 피폭선량 연구와 선량정보 공개를 위해 조력하고자 한다. 프로그램은 ICRP 80, 106 Report와 추록4에 수록되어 있는 방사성의약품의 방사능당 유효선량(mSv/MBq)을 Database로 만든 다음 5가지(Area, Clark, Solomon(Fried), Webster, Young) 소아주입량 산출법과 7가지 체표면적 산출법이 적용되도록 Microsoft의 Visual Basic(In Excel)으로 제작하였다. 프로그램은 수검자의 연령, 방사성핵종, 표지화합물, 그리고 인체주입량을 입력하면 유효선량(mSv)이 산출된다. 소아의 경우 연령 입력 시 소아산출법이 활성화 되며 적용할 소아산출법을 선택하면 된다. 그리고 소아산출법 중 Area법을 선택하는 경우 체표면적산출법을 고르는 선택창이 활성화 된다. 그런 다음 성인의 주입량을 입력하면 소아의 주입량과 유효선량(mSv)이 자동으로 산출된다. 본 연구에서 제작한 핵의학검사의 환자 유효선량 계산 프로그램은 실제 계측선량이 아니지만 핵의학 검사 시 받게 되는 인체의 내부피폭선량을 가장 근접하게 산출할 수 있는 도구로서 의미가 있다. 향후 프로그램의 활용도를 높이기 위해 모바일기기에서 사용할 수 있는 애플리케이션으로 제작하여 일반인도 쉽게 접근할 수 있도록 할 것이다.