• Title, Summary, Keyword: dendrometer

Search Result 6, Processing Time 0.032 seconds

Growth Response of Pinus densiflora to Hydrologic Conditions in the Central Korea (수문 요인에 대한 중부 지역 소나무의 생장 반응)

  • Kim, Je-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.66-71
    • /
    • 1999
  • Main concern is to figure out the growth response of Pinus densiflora to hydrologic conditions in the central Korea. Continuous measurements were carried out with six trees with dendrometers in the Chungbuk National University experimental forest (Wolak-san) during 1995~1996. Surrounding hydrological conditions reflected by the solar radiation, air temperature, precipitation, soil water were included in measurements. Their effects on the biological response of trees was investigated and expressed as response functions. With these response functions, tree growth model was developed. Soil water availability was more related to the tree growth than air temperature. Limited number of biological measurements with dendrometer could permit determination of dynamics of radial tree growth to the hydrological conditions. Tree growth model could be used to check and revise the statistical transfer function of dendrohydrology.

  • PDF

Long-Term Monitoring of Climatic and Soil Factors, and Tree Growths in Worak Mountain Using Phytogram System (파이토그램을 이용한 월악산 기후요소, 토양환경 및 수목생장 장기간 모니터링)

  • 박원규;서정욱
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • Using the phytogram system, this study monitored hourly environmental factors(climate and soil), and radial growths and cambium activities of conifers in Worak mountain for 28 months from May 1996 to October 1998 to examine the influences of climatic factors on tree growths/carnbium activities of conifers in Worak Mountain, Korea. The phytogram system first puts a fine electrode into cambial zone. This device can automatically record environmental factors and cambium electrochemistry(hydration and proton levels). Dendrometers are attached to the phytogram for monitoring seasonal dynamics of cambial growth. We compared the results of radial growth by species and by diameter class. The growth decreased in order of Larix leptolepis, Pinus densiflora and Pinus rigida. Pre-monsoon growths were fast and May-June moisture regime was the most critical for all species. In the middle of September, radial growths were finished. The proton level and stem diameter reached the minimum at 4 p.m. On the other hand, the hydration level reached the maximum at 4 p.m. This diurnal change resulted from transpiration and the release of water from phloem storage to sapwood through xylem stream.

  • PDF

Studies on the Efficient Improvement of Measurement Methods of Stand Volume (임분재적(林分材積) 측정법(測定法)의 효율적(效率的) 개선방안(改善方案)에 관(關)한 연구(研究))

  • Lee, Jong Lak;Yun, Jong Hwa;Lee, Heung Kyun;Kim, Chang Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.3
    • /
    • pp.181-192
    • /
    • 1987
  • The purpose of this study is to develop the method of stand volume estimation by the plotless sampling method. The required data were obtained from 164 sampling plots in the red pine(Pinus densiflora) stands which were located in Kyeong-gi, Chung-nam, Chung-buk and Kang-won areas, and related factors were measured actually. The method of stand volume estimation and several tables were drivel from these data. 1. The relationship between the values of stand average height, basal area per ha, and basal area height obtained from the plotless sampling method and values measured actually could be described by the equation Y=bx, where b approached nearly 1.0 and there were no significant differences between them. Therefore stand volumes could be estimated by the plotless sampling method. 2. The estimated equations of the stand voulumes, which were estimated using factors to be measured by dendrometer, are as follows ; logV=-0.0208+0.8497 logGH, logV=-0.0028+0.7981 logG+0.9313 logH. Stand volume tables by these estimated equations were shown in table 4, 5 and estimation error percentages were 9.16% and 8.50% respectively. FH=D/(1.5205+0.0994D) logFH=0.0451+0.2429 logD+0.3474 logH logFG=-0.0380+0.7758logG-0.0066logH F=H/ (-5.1697+2.6013H) F=FH/(-3.1256+2.7611FH) logF=-0.0634-0.0848 logGH-0.1224 logDi 4. Stand form height tables(table7, 8), form basal area tables(table 9), and stand form factor tables(table 10, 11) were prepared using the above estimated equations, and the estimation error percentages were less than 10%.

  • PDF

A Study on the Stand Volume Estimation by Strand Method (Strand법(法)에 의한 임분재적추정(林分材積推定)에 관(關)한 연구(硏究))

  • Lee, Heung Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.187-192
    • /
    • 1991
  • This study was carried out to estimate the stand volume for Japanese larch(Larix leptolepis) by Strand sampling method. The data collected for this study were based on the 380 sample plots from the field survey, which were distributed in the major part of Korea(Kyeongi, Kangweon, Chungbuk, Chungnam, Chunbuk and Kyeongbuki), and the plotless sampling instrument such as dendrometer, spiegel relascope and tele-relascope were used. The procedure for this study is summarized briefly as follows : 1. There were not only significant differences between volume estimation by Strand sampling method and that by plot survey method, and the relationship was y=bx, where b approached nearly 1. Therefore, the stand volume of Japanese larch could by estimated by Strand sampling method. 2. The value measured by three different plotless sampling instruments did not showed any significant differences between instruments and observers, density and instruments, and ground slope and instruments. 3. With the stand volume, basal area height showed the highest correlation and stand form height, average height, basal area per ha correlated with the volume in thier orders. 4. The best fitted equation of stand volume estimation with basal area height by relascope was as follow. log V=-0.0375+0.8910 log GH-1.5946 1/GH Stand volume table also was obtained using the above estimeated equation. 5. The relationship between estimated value and actual value was Y=bx, where b was nearly 1. The correlation coefficient was very high and the percentage of estimated error was 4.5%.

  • PDF

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.