• Title, Summary, Keyword: daidzein

Search Result 259, Processing Time 0.05 seconds

Ethanol Modified Supercritical$CO_2$ Extraction of Daidzein from Soybean (에탄올 보조용매 초임계$CO_2$를 이용한 대두 Daidzein 추출)

  • 부성준;변상요
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.95-98
    • /
    • 2001
  • Various factors affecting the supercritical carbon dioxide extraction of daidzein from soybean were studied. Daidzein was not extracted with pure supercritical carbon dioxide. The ethanol was an efficient modifier for supercritical carbon dioxide to extract daidzein. The extraction efficiency increased as the pressure increased up to 300 bar. At $35^{\circ}C$ and 300 bar, 93% of daidzein was extracted with supercritical carbon dioxide modified with 15% of ethanol.

  • PDF

Studies on the anti-infiammatory activity and its mechanism of daidzein (Daidzein의 항염작용과 그 작용기전에 관한 연구 (I))

  • 허인회;이상준;김형춘
    • YAKHAK HOEJI
    • /
    • v.31 no.3
    • /
    • pp.154-163
    • /
    • 1987
  • Daidzein and its methyl derivatives were synthesized and their anti-inflammatory activities were examined. Daidzein suppressed the carrageenin-induced edema, but its methyl derivatives showed decrease or abolition of the anti-inflammatory effect. Daidzein did not significantly suppress the complete Freund's adjuvant-induced arthritis, and the mixed phlogistics (histamine+serotonin)-induced edema. Daidzein inhibited the leukocyte emigration and protein exudation when it was administered into the CMC pouch at low doses (5,25mg/pouch). Daidzein significantly suppressed the cotton-pellet granuloma formation.

  • PDF

Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells

  • Zhang, Liuping;Cui, Sheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.618-625
    • /
    • 2009
  • The objective of this work was to study the direct effects of daidzein on steroidogenesis in cultured mouse Leydig cells. Adult mouse Leydig cells were purified by Percoll gradient centrifugation, and the cell purity was determined using a $3{\beta}$-hydroxysteroid dehydrogenase ($3{\beta}$-HSD) staining method. The purified Leydig cells were exposed to different concentrations ($10^{-7}$ M to $10^{-4}$ M) of daidzein for 24 h under basal and human chorionic gonadotropin (hCG)-stimulated conditions. The cell viability and testosterone production were determined, and the related mechanisms of daidzein action were also evaluated using the estrogen receptor antagonist ICI 182,780 and measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and $3{\beta}$-HSD-1 involved in testosterone biosynthesis. The results revealed that daidzein did not influence cell viability. Daidzein increased both basal and hCG-stimulated testosterone production in a dose-dependent manner, and this effect was statistically significant at concentrations of $10^{-5}$ M and $10^{-4}$ M daidzein (p<0.05). ICI 182,780 had no influence on daidzein action. RTPCR results revealed that $10^{-5}$ M and $10^{-4}$ M daidzein did not exert any obvious influence on the mRNA level of P450scc in Leydig cells. However, in the presence of hCG, these concentrations of daidzein significantly increased the StAR and $3{\beta}$-HSD-1 mRNA levels (p<0.05), but in the absence of hCG, only $10^{-5}$ M and $10^{-4}$ M daidzein up-regulated the StAR and $3{\beta}$-HSD-1 mRNA expression (p<0.05), respectively. These results suggest that daidzein has direct effect on Leydig cells. Daidzein-induced increase of testosterone production is probably not mediated by the estrogen receptor but correlates with the increased mRNA levels of StAR and $3{\beta}$-HSD-1.

Inhibitory Mechanism of Daidzein on Helicobacter pylori Growth (Helicobacter pylori 의 생육에 대한 Daidzein의 저해 특성)

  • Bae, Kyung-Mi;Lee, Ju-Youn;Lee, Hee-Seob
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.1083-1086
    • /
    • 2010
  • This study was conducted to investigate the inhibitory effects of daidzein against H. pylori and its cholesterol $\alpha$-glucosyltransferase ($CHL{\alpha}GcT$). $CHL{\alpha}GcT$ is responsible for the production of $\alpha$-glucosyl cholesterol which constitutes more than 25% of cell wall lipids in H. pylori, and it has been suggested that it is essential for H. pylori viability. $CHL{\alpha}GcT$ was inhibited by daidzein, in a dose-dependant manner, of which $IC_{50}$ value was $128.5\;{\mu}M$. Daidzein also showed the inhibitory effect toward H. pylori growth by paper disc diffusion assay. Therefore, it is thought that the inhibition of daidzein on $CHL{\alpha}GcT$ was related to its anti-Helicobacter activity.

Effects of Daidzein on mRNA Expression of Bone Morphogenetic Protein Receptor Type I and II Genes in the Ovine Granulosa Cells

  • Chen, A Qin;Xu, Zi Rong;Yu, Song Dong;Yang, Zhi Gang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2010
  • Daidzein, a natural isoflavonoid phytoestrogen, structurally resembles estradiol (E2) and possesses estrogenic activity. This study was designed to test the hypothesis that daidzein may mimic the effects of E2 on ovine follicle development by regulation of the mRNA expression of bone morphogenetic protein receptor genes and thereby influence the reproductive system. Granulosa cells were cultured in serum-free McCoy's 5A medium with and without supplementation of daidzein. Results showed that daidzein (10-100 ng/ml) significantly increased the proliferation of ovine granulosa cells (p<0.05), but inhibited the growth of granulosa cells at a dose of 1,000 ng/ml (p<0.01). Daidzein inhibited progesterone production in a dose dependent manner; however, it did not affect estradiol production by granulosa cells. We also investigated the effects of daidzein on BMPRII, BMPRIB and ALK-5 mRNA expression in ovine granulosa cells by quantitative real-time PCR. Treatment of granulosa cells with daidzein increased significantly expression of these genes at 10-100 ng/ml. Thus, these data suggested that a low concentration of daidzein (10-100 ng/ml) had a direct stimulatory effect on ovine granulosa cells while a high concentration was toxic.

Studies on the anti-infiammatiry activity and its mechanism of daidzein (Daidzein의 항염작용과 그 작용기전에 관한 연구 (II))

  • 허인회;이상준;김형춘
    • YAKHAK HOEJI
    • /
    • v.31 no.3
    • /
    • pp.164-172
    • /
    • 1987
  • The anti-inflammatory mechanism of daidzein was investigated in rats and mice. Daidzein and 4'-methyldaidzein inhibited capillary permeability and lipid peroxidation. Daidzein inhibited growth of granuloma when it was administered into the carrageenin pouch at the low dose, while it acted contrarily at the high dose. Daidzein decreased the antiinflammatory effect in adrenalectomized rat, depleted ascorbic acid and cholesterol contents in adrenals, and increased corticosterone level in plasma, suggesting dadzein acts on the hypophysisadrenal system.

  • PDF

Effect of Genistein and Daidzein on Antioxidant Defense System in C57BL/KsJ-db/db Mice (Genistein과 Daidzein 급여가 제2형 당뇨동물모델의 적혈구와 조직 중의 항산화방어계에 미치는 영향)

  • Park, Sun-Ae;Kim, Myung-Joo;Jang, Joo-Yeun;Choi, Myung-Sook;Yeo, Ji-Young;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1159-1165
    • /
    • 2006
  • Our preliminary study showed that genistein and daidzein improved blood glucose level in type 2 diabetic mice by enhancing the glucose and lipid metabolism. The objective of this study was to evaluate whether genistein and daidzein are associated with alterations in antioxidant defense mechanism of type 2 diabetic mice. Male C57BL/KsJ-db/db (db/db) mice and age-matched non-diabetic littermates (db/+) were used in this study. The db/db mice were divided into control, genistein (0.02%, w/w) and daidzein (0.02%, w/w) groups. The relative weights of liver, epididymal adipose tissue and perirenal adipose tissue were significantly higher in the db/db group than in the db/+ group, whereas heart weight was lower. The genistein and daidzein supplement did not affect the organ weights in db/db mice. The blood glucose level was positively correlated with superoxide dismutase (SOD, r=0.380, p<0.05) and catalase (CAT, r=0.345, p<0.05) activities and negatively correlated with glutathione peroxidase (GSH Px, r= 0.404, p<0.05) activity in erythrocyte. Therefore, the erythrocyte SOD and CAT activities were significantly elevated in the db/db group compared to the db/+ group and the GSH-Px activity was lowered. However, the supplementation of genistein and daidzein reversed erythrocyte CAT and GSH-Px activities in type 2 diabetic mice. In this current study, the SOD activities in liver, kidney and heart were significantly not different between the groups. The CAT and GSH-Px activities in liver and GSH-Px activity in kidney were significantly higher in the db/db group than in the db/+ group, while the CAT activity in kidney, CAT and GSH-Px activities in heart were lowered. The supplementation of genistein and daidzein significantly attenuated the changes of CAT and/or GSH-Px activities in liver and heart. The supplementation of genistein and daidzein elevated GSH levels in kidney and heart compared to the db/db control group. The lipid peroxide levels in liver, kidney and heart were significantly lowered in the genistein and daidzein supplemented groups compared to the db/db control group. These results suggest that genistein and daidzein might be beneficial for the prevention of type 2 diabetic complication via suppressing changes of antioxidant enzymes activities with simultaneous reduction of lipid peroxidation.

Changes in the Accumulation of Isoflavonoids in Soybeans by Stress (Stress에 의한 대두의 Isoflavonoid 화합물 축적변화)

  • Kim, Jin Tae;Kim, Jang Eok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.12
    • /
    • pp.9-22
    • /
    • 1994
  • The changes of the time-dependent accumulation of isoflavone aglycones(daidzein, genistein) and their glucosides(daidzin, genistin) by various stress-inducing treatment on cotyledon of soybeans(Dankyungkong and Paldalkong) were investigated. Levels of isoflavone aglycones and their glucosides in soybeans treated with UDP-glucose, $MgSO_4$ and $HgCl_2$ and infected with phytopathogen appeared to be higher than those of treatment with distilled water. When compared with data for control, the levels of isoflavone glucosides in citrate-treated soybeans were increased but those of their aglycones did not appear appreciable differences. In Paldalkong treated with UDP-glucose, $MgSO_4$ and $HgCl_2$ the levels of isoflavone aglycones and their glucosides were higher than in Dankyungkong. In particular, the accumulation of daidzein in Paldalkong was significantly higher than in Dankyungkong. By infection with Botrytis cinerea, the maximum amount of accumulation of daidzein in two cultivar did not to be a large different, but accumulation time appeared more rapidly in Paldalkong than Dankyungkong. The accumulation amount of daidzein and genistein in Dankyungkong treated with elicitors appeared to be similar at initial stage, but the level of daidzein after 48hours appeared to be higher than that of genistein. In Paldalkong, the level of daidzein was higher than that of genistein at all stage. The level of daidzein in soybeans infected with phytopathogen appeared to be higher than that of genestein.

  • PDF

Synergistic Cytotoxic Effects by Combination Treatment of Genistein and Daidzein in Human Colorectal Cancer Cell (대장암 세포주에서 genistein과 daidzein의 병합처리에 의한 상승적인 세포독성 효과)

  • Son, Seong-Min;Lim, Seung-Hyun;Kim, Hyo-Rim;Kim, Min-Jeong;Kim, Tae-Wan;Lee, Jong-Hwa;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1294-1298
    • /
    • 2009
  • To investigate whether isoflavone genistein and daidzein could affect cancer cell viability, human colorectal HCT116 cells were incubated with genistein or daidzein in a dose-dependent manner. Genistein decreased cancer cell viability in a dose-dependent manner, whereas daidzein did not show dramatic cytotoxic effects. We also found that 71 genes were up-regulated more than 2-fold, whereas 64 genes were down-regulated more than 2-fold with 24 hr of $50{\mu}M$ genistein treatment by our previous microarray data. Among the up-regulated genes, we selected 3 genes (DKK1, ATF3 and NAG-1) and performed RT-PCR to confirm microarray data. The results of RT-PCR were highly correlated with those of the microarray experiment. In addition, we investigated whether a combination treatment of genistein and daidzein could affect cancer cell viability. Surprisingly, the combination treatment did show synergistic cytotoxic effects detected by MTS assay. The results of RT-PCR and real-time PCR indicate that a combination of genistein and daidzein can synergistically induce NAG-1 expression in HCT116 cells. This result implies that NAG-1 induction is highly associated with synergistic cytotoxic effects induced by a combination treatment of genistein and daidzein. Overall, these results may provide a clue in explaining the anti-cancer activity of soy bean in human colorectal cancer.

Effects of Soy Isoflavone Intake on Urinary and Fecal Isoflavone Excretion in Rats

  • Nam, Hae-Kyung;Kim, Sun-Hee
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • This study was undertaken to determine the bioavailability of isoflavones in weanling Sprague-Dawley rats by providing diets containing different levels of soy isoflavones for 6 weeks: 0.025% (low isoflavone intake; LI), 0.125% (medium isoflavone intake; MI), and 0.25% (high isoflavone intake; HI). The subsequent fecal and urinary excretion of daidzein and genistein was then measured. As the levels of dietary isoflavones increased, the amount of food intakes significantly decreased, and weight gain was slower in female rats. In male rats, there was no significant difference in weight gains related to dietary intakes. Urinary excretion of daidzein and genistein was significantly higher in the MI and HI groups in both male and female rats than the control and LI groups. The recovery % of daidzein and genistein in the urine was significantly lower in the MI and HI groups. Fecal daidzein increased as dietary isoflavone intakes increased in female rats; however, in male rats the increase was significant only in the HI group. The recovery % of daidzein and genistein in the feces of female rats was not significantly different among the four groups. When dietary isoflavones were increased from 0.025% to 0.25%, the amounts of daidzein and genistein excreted in the urine and feces increased; however, the low recovery rate of both daidzein and genistein in the urine implies an increased bioavailability of isoflavones. We also observed sex-related differences in the urinary and fecal recovery of isoflavone intakes.