• Title, Summary, Keyword: critical excitation models

Search Result 8, Processing Time 0.079 seconds

Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint

  • Bazrafshan, Arsalan;Khaji, Naser
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.45-56
    • /
    • 2020
  • The application of critical excitation method with displacement-based objective function for multi degree of freedom (MDOF) systems is investigated. To this end, a new critical excitation method is developed to find the critical input motion of a MDOF system as a synthetic accelerogram. The upper bound of earthquake input energy per unit mass is considered as a new constraint for the problem, and its advantages are discussed. Considering this constraint, the critical excitation method is then used to generate synthetic accelerograms for MDOF models corresponding to three shear buildings of 10, 16, and 22 stories. In order to demonstrate the reliability of generated accelerograms to estimate dynamic response of the structures, three target ground motions with considerable level of energy contents are selected to represent "real critical excitation" of each model, and the method is used to re-generate these ground motions. Afterwards, linear dynamic analyses are conducted using these accelerograms along with the generated critical excitations, to investigate the key parameters of response including maximum displacement, maximum interstory drift, and maximum absolute acceleration of stories. The results show that the generated critical excitations can make an acceptable estimate of the structural behavior compared to the target ground motions. Therefore, the method can be reliably implemented to generate critical excitation of the structure when real one is not available.

Optimal placement of viscoelastic dampers and supporting members under variable critical excitations

  • Fujita, Kohei;Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of both the added dampers and their supporting members to minimize an objective function of a linear multi-storey structure subjected to the critical ground acceleration. The objective function is taken as the sum of the stochastic interstorey drifts. A frequency-dependent viscoelastic damper and the supporting member are treated as a vibration control device. Due to the added stiffness by the supplemental viscoelastic damper, the variable critical excitation needs to be updated simultaneously within the evolutionary phase of the optimal damper placement. Two different models of the entire damper unit are investigated. The first model is a detailed model referred to as "the 3N model" where the relative displacement in each component (i.e., the spring and the dashpot) of the damper unit is defined. The second model is a simpler model referred to as "the N model" where the entire damper unit is converted into an equivalent frequency-dependent Kelvin-Voigt model. Numerical analyses for 3 and 10-storey building models are conducted to investigate the characters of the optimal design using these models and to examine the validity of the proposed technique.

Optimal input cross-power spectra in shake table testing of asymmetric structures

  • Ammanagi, S.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1115-1132
    • /
    • 2015
  • The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.

A new method to predict the critical incidence angle for buildings under near-fault motions

  • Sebastiani, Paolo E.;Liberatore, Laura;Lucchini, Andrea;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.575-589
    • /
    • 2018
  • It is well known that the incidence angle of seismic excitation has an influence on the structural response of buildings, and this effect can be more significant in the case of near-fault signals. However, current seismic codes do not include detailed requirements regarding the direction of application of the seismic action and they have only recently introduced specific provisions about near-fault earthquakes. Thus, engineers have the task of evaluating all the relevant directions or the most critical conditions case by case, in order to avoid underestimating structural demand. To facilitate the identification of the most critical incidence angle, this paper presents a procedure which makes use of a two-degree of freedom model for representing a building. The proposed procedure makes it possible to avoid the extensive computational effort of multiple dynamic analyses with varying angles of incidence of ground motion excitation, which is required if a spatial multi-degree of freedom model is used for representing a building. The procedure is validated through the analysis of two case studies consisting of an eight- and a six-storey reinforced concrete frame building, selected as representative of existing structures located in Italy. A set of 124 near-fault ground motion records oriented along 8 incidence angles, varying from 0 to 180 degrees, with increments of 22.5 degrees, is used to excite the structures. Comparisons between the results obtained with detailed models of the two structures and the proposed procedure are used to show the accuracy of the latter in the prediction of the most critical angle of seismic incidence.

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

Vibration characteristics of power differential gear train for 2.5MW wind turbine (2.5MW 풍력발전기 동력분기식 기어트레인의 진동특성)

  • Kim, Jung Su;Park, No Gill;Lee, Hyoung Woo
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.38 no.3
    • /
    • pp.253-261
    • /
    • 2014
  • In this paper, vibration analysis of power differential gear train for 2.5MW wind turbine system is analyzed. which system is composed of two planetary gear set, one helical gear set and main shaft that connected by flange. Planetary gear set, helical gear set, main shaft are modeled in MASTA program and housing, torque arm, carrier, flange components are modeling by finite element method. Each models are combined by component mode superposition. To analysis of natural vibration characteristic about 2.5MW wind turbine gear train was performed and check about critical speed with wind load, mass unbalance, angle misalignment excitation frequency.

Cross Talk among Pyroelectric Sensitive Elements in Thermal Imaging Device

  • Bang Jung Ho;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.780-783
    • /
    • 2004
  • The two-dimensional modeling of the non-stationary thermal state and voltage responsivity of the sensitive elements usually used in solid-state pyroelectric focal plane arrays are presented. Temperature distributions under periodical thermal excitation and the response of the thermal imaging device, which is composed of the pyroelectric sensitive elements mounted on a single silicon substrate, are numerically calculated. The sensitive element consists of a covering metal layer, infrared polymer absorber, front metal contact, sensitive pyroelectric element, the interconnecting column and the bulk silicon readout. The results of the numerical modeling show that the thermal crosstalk between sensitive elements to be critical especially at low frequency (f < 10Hz) of periodically modulated light. It is also shown that the use of our models gives the possibility to improve the design, operating regimes and sensitivity of the device.

  • PDF

Development and deployment of large scale wireless sensor network on a long-span bridge

  • Pakzad, Shamim N.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.525-543
    • /
    • 2010
  • Testing and validation processes are critical tasks in developing a new hardware platform based on a new technology. This paper describes a series of experiments to evaluate the performance of a newly developed MEMS-based wireless sensor node as part of a wireless sensor network (WSN). The sensor node consists of a sensor board with four accelerometers, a thermometer and filtering and digitization units, and a MICAz mote for control, local computation and communication. The experiments include calibration and linearity tests for all sensor channels on the sensor boards, dynamic range tests to evaluate their performance when subjected to varying excitation, noise characteristic tests to quantify the noise floor of the sensor board, and temperature tests to study the behavior of the sensors under changing temperature profiles. The paper also describes a large-scale deployment of the WSN on a long-span suspension bridge, which lasted over three months and continuously collected ambient vibration and temperature data on the bridge. Statistical modal properties of a bridge tower are presented and compared with similar estimates from a previous deployment of sensors on the bridge and finite element models.