• Title/Summary/Keyword: copper

Search Result 6,305, Processing Time 0.122 seconds

Zinc and Copper Intake with Food Analysis and Levels of Zinc and Copper in Serum, Hair and Urine of Female College Students (도시 여대생에 있어 식품분석에 의한 아연, 구리섭취량과 혈액, 머리카락, 소변의 아연, 구리 함량에 관한 연구)

  • 손숙미
    • Journal of Nutrition and Health
    • /
    • v.32 no.6
    • /
    • pp.705-712
    • /
    • 1999
  • The purpose of this study was to assess the zinc and copper nutritional status of 102 college women by measuring zinc and copper intake, hematological parameters of zinc and copper, hair zinc and urinary excretion of zinc and copper. The mean zinc intake was 5.5mg(45.8% RDA) with food analysis and 4.5mg(37.8% RDA) with computation from food composition table. The copper intake with food analysis was 2.3mg and 1.2mg with computation. Mean serum zinc concentration was 77.02ug/dl and the proportion of subjects with zinc deficiency estimated by serum zinc(<70ug/dl)was 23.0%. Mean serum copper concentration was 121.80ug/dl and 4.1% of subjects showed serum copper less than 70ug/dl, The mean ceruloplasmin concentration was 22.63mg/dl and the proportion of subjects whose ceruloplasmin was lower than 18-40mg/dl was 6.6%. The mean hair zinc of subjects was 143.8ppm and the mean hair copper was 11.2ppm. The mean urinary excretion of zinc was 0.43mg/day and the proportion of subjects with marginal deficiency estimated by urinary zinc excretion( <0.3mg/day) was 23.3%. The mean urinary copper excretion was 0.044mg/day which was within the normal range(0.01-0.06mg/day). Assessing by zinc content in hair, urine and serum, 22.9-23.3% of college women had bordeline zinc deficiency or zinc deficiency. Whereas 4.1-6.6% of college women was assessed copper deficiency estimated by serum copper and ceruloplasmin.

  • PDF

Characteristic of Flotation for Recovery of Copper from Copper Slag in Kazakhstan (카자흐스탄 구리제련소 슬래그 내 구리회수를 위한 선별 특성)

  • Park, Jayhyun;Choi, Uikyu;Choe, Hongil;Shin, Shunghan
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.12-21
    • /
    • 2015
  • Almost all copper slags contain a considerable amount of Cu (0.5 - 3.7%) close to or even higher than copper ores. A number of methods for metal recovery from copper slag were reported These methods can be classified into three categories, flotation, leaching and roasting. Sulfide flotation method for the recovery of copper from Kazahstan copper furnace slag is discussed in this investigation. 50% of copper from the slag was recovered by sulfide flotation at pH 4. meanwhile 67% of copper from the slag was recovered at pH 11. Higher copper recovery result at pH 11 rather than that at pH 4 was caused by the fact that copper sulfides were floated in particle size fraction over $100{\mu}m$ in concentrates at pH 11. When the slag were ground below $74{\mu}m$by ball milling, the recovery of copper by floation in slag improved to 78 - 83% because of copper liberation effect.

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

The Algal Phosphorus Uptake and Growth by Copper and Methylglyoxal (구리와 Methylglyoxal에 의한 조류의 성장 및 인 흡수)

  • 이기태;이기성
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.145-153
    • /
    • 1999
  • Effects of various concentrations of copper in solid fibrous form and methylglyoxal (MG) on phosphorus uptake and growth change of green algae Scenedesmus obliquus were studied. There was significant differences among cultures treated with various concentrations of copper and MG in growth of algae with parameters of cell numbers, photosynthetic rate and cellular morphology, and phosphorus uptake by cell. When the copper in media is treated with 25 mg or 50 mg per 100 ml of Bristol solution, the mean cell number of algae was 15.642${\times}$10$\^$6/ cells$.$ml$\^$-1/ and 12.986${\times}$10$\^$6/ cells$.$ml$\^$-1/, respectively, while those of algae in culture without copper was 18.486${\times}$10$\^$6/ cells$.$ml$\^$-1/. The mean cell area of 2450 ${\mu}$m$^2$, 1894 ${\mu}$m$^2$and 1697 ${\mu}$m$^2$in basic media, basic media with 25 mg of copper and basic media with 50 mg of copper was showed the inhibitory effect of copper on algal growth. The algal growth was stimulated by MG when the culture was treated with 25 mg of copper or without copper, while it was inhibited when the culture was treated with 50 mg of copper. It was considered that there was significant interaction between copper and MG on algal growth. The phosphorus concentration in algal medium treated with 25 mg or 50 mg of copper was 29.435 ppm and 26.224 ppm, respectively, while those of algae in culture without copper was 52.8 ppm, which shows that the application of copper in algal medium can prevent the availability of phosphorus to algal cell.

  • PDF

New Methods of Producing Copper Sulfate Crystals Using Small-Scale Chemistry(SSC) in Elementary School Science (초등과학에서 미량화학(SSC)을 이용한 황산구리 결정 만들기의 새로운 방법)

  • Han, Sang-Joon;Kim, Sung-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.981-992
    • /
    • 2008
  • This study examined how to produce new methods of copper (II) sulfate crystallization by using a small-scale chemistry tool such as small-scale reaction surface and petri dish. The making of copper(II) sulfate is included in the 5th grade elementary science textbooks. Various copper(II) compounds were reacted with a 2 M sulfuric acid solution. The result of this study is as follows: Seven small amounts of copper(II) compounds were reacted with a few drops of 2 M sulfuric acid solution at room temperature to make a copper(II) sulfate crystal of triclinic shape. Using the petri dish method, a copper(II) sulfate crystal could be identified within one hour of reacting copper(II) hydroxide, copper(II) carbonate, copper(II) nitrate, copper(II) perchlorate, cupric(II) formate from a few drops of 2 M sulfuric acid solution at room temperature. When using the lap top method for copper(II) perchlorate, cupric formate, a proper crystal could be identified within one hour as well. SSC methods were used for the first time to make a copper sulfate crystal via chemical reaction. We can make a copper(II) sulfate crystal using a simple method which is easier, safer and saves time in class. And since a small quantity of chemicals are being used in SSC chemical methods, waste is greatly reduced. This lessens the amount of environmental problems caused by the experiment. This can be helpful in preserving nature. In addition the cost of chemical and laboratory equipment is greatly reduced because it uses material that we find in our daily lives. There will be continued study of small-scale methods such as improvement of new programs, study and training of teachers, and securing SSC tools. I would like to suggest such as SSC methods are applicable in elementary School Science. I would like it to become a wide spread program.

Toxicity Effects of Copper on the Physiological Responses of Anabaena flos-aquae (Cyanophyceae) (구리독성이 Anabaena flos-aquae의 생리적 변화에 미치는 영향)

  • Ryu, Ji-Won;Choi, Eun-Joo;Rhie, Ki-Tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • Effects of various concentrations of copper on growth change of blue-greenalgae Anabaena flos-aquae were studied. There was significant differences among cultures treated with various concentrations of copper in growth of algae with parameters of cell numbers, specific growth rate (SGR) and chlorophyll contents. Algal growth and SGR were inhibited on by effect of various concentrations of copper more than without copper (ANOVA, F=34.69 p<0.001, F=114.89, p<0.001). The SGRs of various concentrations of copper in media were higher than without copper on 8 days after copper treated. The mean of chlorophyll contents was 1.978 ${\mu}g{\cdot}mL^{-1}$ and 1.648 ${\mu}g{\cdot}mL^{-1}$, respectively, while those of algae in culture without copper was 3.179 ${\mu}g{\cdot}mL^{-1}$ (ANOVA, F=153.74, p<0.001). The cellular morphology was different between media of which copper treated and without copper. The colony of algae in media which copper treated was shorter than without copper. Effects of various concentrations of copper on growth change of blue-green-algae Anabaena flos-aquae occured variety changes of parameters of cell numbers, specific growth rate (SGR), chlorophyll contents and cellular morphology on growth of algae.

Oxidative Modification of Neurofilament-L by Copper-catalyzed Reaction

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.488-492
    • /
    • 2003
  • Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for neuronal survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of copper and peroxide in the modification of NF-L. When disassembled NF-L was incubated with copper ion and hydrogen peroxide, then the aggregation of protein was proportional to copper and hydrogen peroxide concentrations. Dityrosine crosslink formation was obtained in copper-mediated NF-L aggregates. The copper-mediated modification of NF-L was significantly inhibited by thiol antioxidants, N-acetylcysteine, glutathione, and thiourea. A thioflavin-T binding assay was performed to determine whether the copper/$H_2O_2$ system-induced in vitro aggregation of NF-L displays amyloid-like characteristics. The aggregate of NF-L displayed thioflavin T reactivity, which was reminiscent of amyloid. This study suggests that copper-mediated NF-L modification might be closely related to oxidative reactions which may play a critical role in neurodegenerative diseases.

A Study on Bacterial Leaching of Low-Grade Copper Mineral(IV) (저품위 동광석의 세균침출에 관한 연구 4)

  • 박원구;이강순
    • Korean Journal of Microbiology
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 1973
  • With the gradual expansion of copper demands, the utilization of enormous tonnages of waste copper mineral containig up to 0.5% copper becomes available. In order to investigate the possibilities on the application of bacterial leaching method to waste dumps or abandoned mines, the authors had carried out microbial leaching of copper minerals by F.ferrooxidans isolated from the Dalsung copper mine water. The results obtained were as follows : 1. The copper extraction rate from the Dalsung chalcopyrite has been a little accerelated by using flasks in place of percolators. 2. The percentage of copper extracted from the Dalsung chalcopyrite sample was 100% in 30 days in the presence of iron-oxidizing bacteria F.ferrooxidans while 9.27% in the absence of bacteria. 3. F.ferroxidans was capable of producing sufficient quantities of ferric sulfate and sulfuric acid from ferrous iron to bring about the dissolution of 100% of copper from the Dalsung chalcopyrite.

  • PDF

Evolutional Transformations of Copper Nanoparticles to Copper Oxide Nanowires

  • Gang, Min-Gyu;Yun, Ho-Gyu;Kim, Yeong-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • /
    • pp.18.2-18.2
    • /
    • 2011
  • We study and analyze here a novel and simple approach to produce copper oxide nanowires in a methanol as an alternative to chemical synthesis routs and VLS-growth method. First, copper oxide nanowires are grown from copper nanoparticles in methanol at $60^{\circ}C$. Nanoparticles are synthesized via inert gas condensation, one of the dry processes. Synthesized nanowires were confirmed via XRD, FESEM and TEM. As a result, all particles have grown to Cu2O nanowires (20~30 nm in diameter, 5~10 um in length; aspect ratio >160~500). Next, these synthesized oxide nanowires are reduced copper nanowires in the furnace under hydrogen flow at $200{\sim}450^{\circ}C$. The evolution of oxide nanowires and their transformation to copper nanowires is studied as a function of time.

  • PDF

A Study on Improvement of Fastness on Cotton-dyed Fabric by Aftertreatment with Copper Sulfate/Thiourea (황산구리/치오요소 후처리에 희한 직접염료의 견뢰도 증진에 관한 연구(II))

  • Yoon, Jung Im;Kim, Kyung Hwan
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 1993
  • The Cotton fabric was dyed with various directd dyes, and then treated with copper sulfate or copper sulfate/thiourea. Munsell color system, dye exhaustion, tensile strength, light fastness, washing fastness and rubbing fastness were investigated for the treated fabrics. The results obtaind are as follows: 1. The color variation of the cotton-dyed fabric by aftertreatment with copper sulfate was shown redish, but original color with copper sulfate/thiourea. 2. Copper sulfate/thiourea was much more effective than copper sulfate only to increase the light fastness, washing fastness and rubbing fastness. 3. Dye exhaustion of the cotton-dyed fabric by aftertreatment with copper sulfate was decreased about 20% more than those of untreated. 4. Tensile stregth of cotton-dyed fabric by aftertreatment with copper sulfate/thiourea was decrease about 10% more than those of untreated.

  • PDF