• Title, Summary, Keyword: copper(II) adsorption ability

Search Result 2, Processing Time 0.023 seconds

Physicochemical Properties and Copper(II) Ion Adsorption Ability of Wood Charcoals (소나무 및 참나무 백탄의 물성과 구리(II) 이온 흡착 효과)

  • Lee, Oh-Kyu;Jo, Tae-Su
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.55-63
    • /
    • 2006
  • Physicochemical properties and copper (II) adsorption ability of two oakwood and two pinewood charcoals, which were manufactured in traditional mode and commercialized in Korea, were examined pHs of these four wood charcoals were between 9.5 and 9.8. In the elemental contents of the wood charcoal, the contents of carbon atom (C) in the four samples were between 85-90%, while the content of hydrogen atom (H) in pinewood charcoal of the company 'S' was 1.62% and this value was three time higher than those of other samples. For iodine adsorption and specific surface area, the pinewood charcoal sample showed higher values than those of the oakwood charcoals. In the copper (II) ion adsorption in aqueous solution, the adsorption rate was increased by the increase of treated amounts of charcoal, treatment time, and pH.

  • PDF

Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder

  • Varma V., Geetha;Misra, Anil Kumar
    • Membrane Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.403-416
    • /
    • 2016
  • The possibility of using carica papaya leaf powder for removal of copper from wastewater as a low cost adsorbent was explored. Different parameters that affect the adsorption process like initial concentration of metal ion, time of contact, adsorbent quantity and pH were evaluated and the outcome of the study was tested using adsorption isotherm models. A maximum of 90%-94.1% copper removal was possible from wastewater having low concentration of the metal using papaya leaf powder under optimum conditions by conducting experimental studies. The biosorption of copper ion was influenced by pH and outcome of experimental results indicate the optimum pH as 7.0 for maximum copper removal. Copper distribution between the solid and liquid phases in batch studies was described by isotherms like Langmuir adsorption and Freundlich models. The adsorption process was better represented by the Freundlich isotherm model. The maximum adsorption capacity of copper was measured to be 24.51 mg/g through the Langmuir model. Pseudo-second order rate equation was better suited for the adsorption process. A dynamic mode study was also conducted to analyse the ability of papaya leaf powder to remove copper (II) ions from aqueous solution and the breakthrough curve was described by an S profile. Present study revealed that papaya leaf powder can be used for the removal of copper from the wastewater and low cost water treatment techniques can be developed using this adsorbent.