• Title/Summary/Keyword: citric acid

Search Result 1,385, Processing Time 0.21 seconds

Efficacy of Aqueous Chlorine Dioxide and Citric Acid in Reducing Escherichia coli on the Radish Seeds Used for Sprout Production

  • Lim, Jeong-Ho;Jeong, Jin-Woong;Kim, Jee-Hye;Park, Kee-Jai
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.878-882
    • /
    • 2008
  • The efficacy of citric acid-aqueous chlorine dioxide ($ClO_2$) treatment of radish seeds artificially contaminated with Escherichia coli was studied. Radish seeds were inoculated with E. coli. Following inoculation, samples were stored at $4^{\circ}C$ and soaked in citric acid or aqueous $ClO_2$ for 10 min. The treatment of radish seeds using 200 ppm aqueous $ClO_2$ solution caused a 1.5 log CFU/g reduction in the population of E. coli. Compared to the aqueous $ClO_2$ treatment, soaking radish seeds in 2.0% citric acid solution for 10 min was more effective in reducing E. coli populations on radish seeds. The efficacy of spray application of chlorine (100 ppm) or 0.5% citric acid to eliminate E. coli during the germination and growth of radish was investigated. Radish seed inoculated with E. coli was treated for the duration of the growth period. Although it resulted in a decrease in the E. coli population, the spray application of 100 ppm chlorine during the growth period was not significantly effective. In contrast, the combined treatment of seeds using 200 ppm aqueous $ClO_2$ and treatment of sprouts with 0.5% citric acid solution during sprout growth was hardly effective in eliminating E. coli.

토양세척법과 동전기 정화 기술을 이용한 중금속 오염지반의 원위치 정화

  • 김병일;한상재;이군택;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • /
    • pp.199-202
    • /
    • 2004
  • In this study the field-scale tests were performed in which in-situ E/K remediation technologies were applied, and then the results were present. For traditional E/K remediation method the efficiency of remediation is not large, but the enhanced method with citric acid significantly increases the removal efficiency. Also EDTA, reported as a good enhancement agent for removal of heavy metals, is similar to that of citric acid. Therefore citric acid is preferred rather than EDTA in view of the cost on the contaminant removal per unit concentration.

  • PDF

Deodorization of Purified Fish Oil from Squids by Organic Acids (유기산물 이용한 오징어 어유의 어취 개선)

  • Jang, Min-Kyung;Lee, Ok-Hee;Kim, Nam-Young;Yu, Ki-Hwan;Jang, Hye-Ji;Lee, Seung-Woo;Park, Mi-Ra;Park, Joung--Hyun;Kim, Mi-Hyang;Ha, Jong-Myung;Bae, Song-Ja;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1284-1288
    • /
    • 2009
  • To produce high quality fish oil products, additional deodorization experiments on purified fish oil from squid using columns filled with citric acid or gluconic acid were performed. A deodorization effect on the fish oil was observed on both the citric acid and gluconic acid columns. These effects were more efficient on the columns packed with 3 g of organic acid than those with 1 g or 2 g of organic acid. In addition, a better effect was observed in the column packed with gluconic acid than that with citric acid. Peroxide value (POV) and acid value (AV) of the sample treated with citric acid was the as same as the non-treated sample. However, POV and AV of the sample treated with gluconic acid were about 10% higher than the non-treated sample. Contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of the samples treated with citric acid or gluconic acid columns were about 0.5% higher than the non-treated sample. In conclusion, deodorization of squid fish oil by organic acid could be an efficient method to produce high quality fish oil products.

Effect of Aqueous Chlorine Dioxide and Citric Acid on Reduction of Salmonella typhimurium on Sprouting Radish Seeds (이산화염소수 및 구연산처리에 따른 무(Raphanus sativus L.) 새싹과 종자의 미생물 제어 효과)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Bum-Keum;Kim, Jong-Chan;Jeong, Jin-Woong;Jeong, Seong-Weon
    • Korean Journal of Food Preservation
    • /
    • v.15 no.5
    • /
    • pp.754-759
    • /
    • 2008
  • The effect of citric acid-aqueous chlorine dioxide ($ClO_2$) treatment of radish seeds artificially contaminated with Salmonella typhimurium was studied. Radish seeds were inoculated by immersion, in more than 106 log CFU/g seed, of a suspension of S. typhimurium, dried, and stored sealed at $4^{\circ}C$ Radish seeds soaked in 200 ppm aqueous ClO2 solution for 10 min showed a bacterial reduction of 1.08 log CFU/g seed, and the lowering of microbial burden noted in seeds soaked in 2% (w/v) citric acid solution for 10 min was 2.89 log CFU/g seed. Next, radish seeds were exposed to 0.5% (v/v) glycerol solution for 10 min either before or after treatment with 200 ppm aqueous ClO2 or 2% (w/v) citric acid for 10 min. Glycerol exposure after citric acid treatment reduced bacteria by 3.46 log CFU/g seed, and glycerol treatment after aqueous $ClO_2$ treatment reduced the microbial burden by 2.14 log CFU/g seed. Both glycerol treatments yielded better elimination of S. typhimurium than did a single treatment with either citric acid or aqueous $ClO_2$. Radish seeds inoculated with S. typhimurium were treated throughout the entire growth period. Although radish seed treatment was effective, treatment by citric acid and aqueous $ClO_2$ after sprouting was not effective to eliminate S. typhimurium.

Effect of Buffers on Citric Acid Production by Aspergillus niger NRRL 567 in Solid Substrate Fermentation (Aspergillus niger NRRL 567을 이용한 고체배양에서 완충용액이 구연산 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.874-878
    • /
    • 2012
  • In the submerged fermentation of fungi, it was known pH had significant effect on the citric acid production. Various growth conditions were applied with different buffer on citric acid production by Aspergillus niger NRRL 567 grown on peat moss to find the optimum pH and most effective buffer solution. The initial pHs of different buffer solutions significantly influenced on the citric acid production and A. niger NRRL 567 produced citric acid more efficiently at high pHs. A phosphate buffer and a carbonate buffer with pH 8.6 and pH 10.0 were identified as suitable buffer solutions for citric acid production. The maximal citric acid production of 564.3 g/kg solid substrate was achieved employing carbonate buffer at pH 10.0.

Properties of Citric Acid-bonded Composite Board from Elephant Dung Fibers

  • Widyorini, Ragil;Dewi, Greitta Kusuma;Nugroho, Widyanto Dwi;Prayitno, Tibertius Agus;Jati, Agus Sudibyo;Tejolaksono, Muhammad Nanang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.132-142
    • /
    • 2018
  • An elephant digests only around 30~45% of what it consumes; therefore the undigested material mainly passes as intact fibres. Elephant food is usually composed of grass, leaves, twigs, bark, fruit and seed pods. This research aimed to utilize the elephant dung fibers as material for composite board and citric acid as a bonding agent. Citric acid contents in this research were set at 0 wt% (binderless composite board), 10 wt%, 20 wt%, and 30 wt% based on dry weight particles, while the target density was set at $0.8g/cm^3$. Pressing temperatures were set at $180^{\circ}C$ and $200^{\circ}C$ with the pressing time was 10 minutes. Physical and mechanical properties tests were then performed according to Japanese Industrial Standard A 5905. The result showed that elephant dung fibers could be used as potential materials for composite board. Addition of citric acid and pressing temperature significantly increased the quality of composite board. Infrared analysis indicated that the presence of ester linkages much higher with the increasing of citric acid content and pressing temperature. The optimum properties of composite board made from elephant dung fibers could be achieved at pressing temperature of $200^{\circ}C$ and a citric acid content of 20 wt%.

Effect of Sulfur Powder and Citric Acid on Arsenic Phytoremediation Using Pteris multifida in Forest Soil (봉의 꼬리를 이용한 수림지 토양의 비소정화에 미치는 유황분말과 구연산의 영향)

  • Kwon, Hyuk Joon;Cho, Ju Sung;Lee, Cheol Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study was carried out not only to identify the optimum concentrations of sulfur powder and citric acid treated for improving arsenic absorption of Pteris multifuda known as hyperaccumulator of arsenic, but also to develop arsenic purification model in the forest soil. After applying sulfur powder (0, 30, 45, $60g{\cdot}m^{-2}$) and citric acid (0, 200, 400, $800g{\cdot}m^{-2}$) in the forest soil contaminated with heavy metals, P. multifuda was planted and cultivated for 16 weeks. And then the growth and arsenic contents of plants were analyzed. In the result of research, the growth of P. mulifuda, except plant width, cultivated in soils treated with sulfur powder and citric acid was relatively lower than control. The accumulated amount of arsenic in aerial parts of P. multifuda ($1822.2mg{\cdot}kg^{-1}$) cultivated in soils treated with $200g{\cdot}m^{-2}$ citric acid was improved 62.5% against the control. And the accumulated amount of arsenic per 1 $m^2$ ($20.1mg{\cdot}m^{-2}$) was the greatest in $200g{\cdot}m^{-2}$ citric acid treatment. Translocation rate (TR) was higher in all acid treatment compare to control, and was the best in $200g{\cdot}m^{-2}$ citric acid treatment (0.95) especially. It showed that the arsenic absorbed in underground parts was transferred fast to aerial parts. Therefore, $200g{\cdot}m^{-2}$ citric acid treatment in the soil is recommended for arsenic purification using P. multifuda.

Kinetics for Citric Acid Production from the Concentrated Milk Factory Waste Water by Aspergillus niger ATCC 9142

  • Suh, Myung-Gyo;Roh, Jong-Su;Lee, Kook-Eui;Lee, Yong-Hee;Chung, Kyung-Tae
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • /
    • pp.359-364
    • /
    • 2005
  • The possible use of milk factory waste water as fermentation media for the production of citric acid by cells of Aspergillus niger ATCC 9142 has been investigated. The addition of $Mn^{2+}$, $Fe^{2+}$ and $Cu^{2+}$ to a medium promoted the citric acid production steadily, but addition of another metal ion $Mg^{2+}$decreased the citric acid production. The concentrations of citric acid were marked up to 7.2g/1 and 16.5g/l in a batch bioreactor by A. niger ATCC 9142 with 50g/1 and 100g/l of reducing sugar concentration in milk factory waste water, respectively.

  • PDF

토양 제염에 있어서 magnetite 용해 거동 연구

  • 원휘준;김민길;김계남;박진호;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • /
    • pp.393-396
    • /
    • 2003
  • Soil contains the several kinds of metal oxides. Magnetite in soil may contribute the generation of secondary waste during the decontamination of soil by citric acid. Dissolution of magnetite powders by citric acid was investigated in the pH range between 2.0 and 5.0. The dissolution behaviour of magnetite was well described by the equation, A[1 - $e^{-B(x-c)}$]. The parameters of the equation were optimized by the iteration method, and the physical meaning of each parameter was explained. Concentration of each of the dissociated chemical species of citric acid was calculated using the ionization constants. The dissolution reaction was explained by the concentration of the dissociated chemical species of citric acid.d.

  • PDF

Crude gingerol extraction and its antioxidant effect (Crude gingerol의 추출과 항산화효과)

  • Hong, Jeng-Hee;Lee, Tae-Kyung;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.143-146
    • /
    • 1990
  • Yellowish and oily crude gingerol extract was obtained from ginger(Zingiber officinale rose)by ether, ether and hexane extraction. The major component was identified by TLC analysis to be gingerol. The crude gingerol extract thus obtained was found to have antioxidant activity. The crude gingerol extract showed a synergistic antioxidant activity when combined with citric acid. The maximum synergistic effect was observed at 0.04% citric acid. The activity of the antioxidants used was found to increase in the order of BHT, crude gingerol plus 0.04% citric acid, crude gingerol, BHA and tocopherols.

  • PDF