• Title, Summary, Keyword: chromosphere

Search Result 67, Processing Time 0.035 seconds

ESTIMATION OF SPICULE MAGNETIC FIELD USING OBSERVED MHD WAVES BY THE HINODE SOT

  • Kim, Yeon-Han;Bong, Su-Chan;Park, Young-Deuk;Cho, Kyung-Suk;Moon, Yong-Jae;Suematsu, Yoshinori
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.173-180
    • /
    • 2008
  • Using the MHD coronal seismology technique, we estimated the magnetic field for three spicules observed in 2008 June. For this study, we used the high resolution Ca II H line ($3968.5\;{\AA}$) images observed by the Hinode SOT and considered a vertical thin flux tube as a spicule model. To our knowledge, this is the first attempt to estimate the spicule magnetic field using the Hinode observation. From the observed oscillation properties, we determined the periods, amplitudes, minimum wavelengths, and wave speeds. We interpreted the observed oscillations as MHD kink waves propagating through a vertical thin flux tube embedded in a uniform field environment. Then we estimated spicule magnetic field assuming spicule densities. Major results from this study are as follows : (1) we observed three oscillating spicules having durations of 5-7 minutes, oscillating periods of 2-3 minutes, and transverse displacements of 700-1000 km. (2) The estimated magnetic field in spicules is about 10-18 G for lower density limit and about 43-76 G for upper density limit. (3) In this analysis, we can estimate the minimum wavelength of the oscillations, such as 60000 km, 56000 km, and 45000 km. This may be due to the much longer wavelength comparing with the height of spicules. (4) In the first event occurred on 2008 June 03, the oscillation existed during limited time (about 250 s). This means that the oscillation may be triggered by an impulsive mechanism (like low atmospheric reconnection), not continuous. Being compared with the ground-based observations of spicule oscillations, our observation indicates quite different one, i.e., more than one order longer in wavelength, a factor of 3-4 larger in wave speed, and 2-3 times longer in period.

Fast Dimming Associated with a Coronal Jet Seen in Multi-Wavelength and Stereoscopic Observations

  • Lee, K.S.;Innes, D.E.;Moon, Y.J.;Shibata, K.;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.89.1-89.1
    • /
    • 2012
  • We have investigated a coronal jet observed near the limb on 2010 June 27 by the Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), and Solar Optical Telescope (SOT), and the SDO/Atmospheric Imaging Assembly (AIA), Helioseismic and Magnetic Imager (HMI), and on the disk by STEREO-A/EUVI. From EUV (AIA and EIS) and soft X-ray (XRT) images we have identified both cool and hot jets. There was a small loop eruption in Ca II images of the SOT before the jet eruption. Using high temporal and multi wavelength AIA images, we found that the hot jet preceded its associated cool jet by about 2 minutes. The cool jet showed helical-like structures during the rising period. According to the spectroscopic analysis, the jet's emission changed from blue to red shift with time, implying helical motions in the jet. The STEREO observation, which enabled us to observe the jet projected against the disk, showed that there was a dim loop associated with the jet. We have measured a propagation speed of ~800 km/s for the dimming front. This is comparable to the Alfven speed in the loop computed from a magnetic field extrapolation of the HMI photospheric field measured 5 days earlier and the loop densities obtained from EIS Fe XIV line ratios. We interpret the dimming as indicating the presence of Alfvenic waves initiated by reconnection in the upper chromosphere.

  • PDF

A Fine-scale Half Ring-like Structure around a Pore

  • Song, Donguk;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.87.2-87.2
    • /
    • 2013
  • We studied a fine-scale half ring-like structure around a pore seen from the high spectral and the high spatial resolution data. Our observations were carried out using the Fast Imaging Solar Spectrograph (FISS) and the InfraRed Imaging Magnetograph (IRIM) installed at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory (BBSO) on 2012 July 19. During the observations, we found a fine-scale half ring-like structure located very close to a pore (~0.4 arcsec apart from the pore). It was seen in the far wing images of the $H{\alpha}$ and Ca II $8542{\AA}$ lines, but it was not seen in the line center images of two lines. The length of the structure is about 4200 km and the width is about 350 km. We determined its line-of-sight velocity using the Doppler shift of the centroid of the Ti II line ($6559.6{\AA}$, close to the $H{\alpha}$ line) and determined horizontal velocity using the NAVE method. we also investigated the magnetic configurations using the Stokes I, Q, U, and V maps of the IRIM. As a results, we found that it has a high blue-shift velocity (~2km) faster than the photospheric features and has a strong horizontal component of the magnetic field. Based on our findings, we suggest that it is associated with small flux emergence, which occurs very close to the pore. Even though it is very small structure, this kind of magnetic configuration can be in chare of the upper chromosphere heating, especially above the pore.

  • PDF

INTENSITY AND DOPPLER VELOCITY OSCILLATIONS IN PORE ATMOSPHERE

  • Cho, Kyung-Suk;Bong, Su-Chan;Nakariakov, Valery;Lim, Eun-Kyung;Park, Young-Deuk;Chae, Jongchul;Yang, Heesu;Park, Hyung-Min;Yurchyshyn, Vasyl
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.98-98
    • /
    • 2014
  • Due to the simple vertical structure of magnetic field, pores can be exploited to study the transport of mechanical energy by waves along the magnetic field to the chromosphere and corona. For a better understanding of physics of pores, we have investigated chromospheric traveling features running across two merged pores from their centers at the speed about 55 km s-1, in the active region AR 11828. The pores were observed on 2013 August 24 by using high time, spatial, and spectral resolution data from the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST). We infer a LOS velocity by applying the bisector method to the Ca II $8542{\AA}$ band and $H{\alpha}$ band, and investigate intensity and the line-of-sight velocity changes at different wavelengths and different positions at the pores. We find that they have 3 minutes oscillations, and the intensity oscillation from the line center is preceded by that from the core ($-0.3{\AA}$) of the bands. There is no phase difference between the intensity and the LOS velocity oscillations at a given wavelength. The amplitude of LOS velocity from near the core spectra is greater than that from the far core spectra. These results support the interpretation of the observed wave as a slow magnetoacoustic wave propagating along the magnetic field lines in the pores. The apparent horizontal motion and a sudden decrease of its speed beyond the pores can be explained by the projection effect caused by inclination of the magnetic field with a canopy.

  • PDF

Is there a stellar companion in hybrid star HD 81817?

  • Bang, Tae-Yang;Lee, Byeong-Cheol;Perdelwitz, V.;Jeong, Gwang-Hui;Han, Inwoo;Oh, Hyeong-il;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • HD 81817 is known as a hybrid star. Hybrid stars have both cool stellar wind properties and UV or even X-ray emission features of highly ionized atoms in their spectra. A white dwarf companion has been suggested as the source of UV or X-ray features. HD 81817 has been observed since 2004 as a part of our radial velocity (RV) survey program to search for exoplanets around K giant stars using the Bohyunsan Observatory Echelle Spectrograph (BOES) at the 1.8 m telescope of Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. We obtained 84 RV measurements between 2004 and 2018 for HD 81817 and found two periodic RV variations. The obtained amplitudes of RV periods are around 200 m/s, which are significantly lower than that expected from a white dwarf companion. Furthermore, our re-analysis of the IUE spectra used by Reimers (1984) shows that the excess in UV emission can easily be explained by a pseudo-continuum of unresolved emission lines originating in the extended chromosphere of the star. We thus conclude that there are no companions of stellar mass to HD 81817. Meanwhile, we analyzed two periodicities in RV measurements and conclude that the period of 627.9 days is caused by intrinsic stellar activities based on H alpha equivalent width (EW) variations of a similar period. On the other hand, the period of 1047.8 days is likely to be caused by substellar companion which has a minimum mass of 27.6 MJUP, a semi-major axis of 3.3 AU, and an eccentricity of 0.17 assuming the stellar mass of 4.3 M⊙ for HD 81817. The inferred mass puts HD 81817 b in the brown dwarf desert.

  • PDF

Doppler Shifts of the $H{\alpha}$ Line and the Ca II 854.2 nm Line in a Quiet Region of the Sun Observed with the FISS/NST

  • Chae, Jongchul;Park, Hyungmin;Yang, Heesu;Park, Young-Deuk;Cho, Kyung-Suk;Ahn, Kwangsu;Cao, Wenda
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.113.1-113.1
    • /
    • 2012
  • The characteristics of Doppler shifts in a quiet region of the Sun are investigated by comparing between the $H{\alpha}$ line and the Caii infrared line at 854.2 nm. A small area of $16^{\prime\prime}{\times}40^{\prime\prime}$ was observed for about half an hour with the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST) at Big Bear Solar Observatory. The observed area contains a network region and an internetwork region, and identified in the network region are $H{\alpha}$ fibrils, Caii fibrils and bright points. We infer the Doppler velocity from each line profile at a point with the lambdameter method as a function of half wavelength separation ${\Delta}{\lambda}$. It is confirmed that the bisector of the spatially-averaged Caii line profile has an inverse C-shape of with a significant peak redshift of +1.8 km/s. In contrast, the bisector of the spatially-averaged $H{\alpha}$ line profile has a different shape; it is almost vertically straight or, if not, has a C-shape with a small peak blueshift of -0.5 km/s. In both the lines, the bisectors of bright network points are much different from those of other features in that they are significantly redshifted not only at the line centers, but also at the wings. We also find that the spatio-temporal fluctuation of Doppler shift inferred from the Caii line is correlated with those of the $H{\alpha}$ line. The strongest correlation occurs in the internework region, and when the inner wings rather than the line centers are used to determine Doppler shift. In this region, the RMS value of Doppler shift fluctuation is the largest at the line center, and monotonically decreases with ${\Delta}{\lambda}$. We discuss the physical implications of our results on the formation of the $H{\alpha}$ line and Caii 854.2 nm line in the quiet region chromosphere.

  • PDF