• Title, Summary, Keyword: chromosphere

Search Result 67, Processing Time 0.074 seconds

Development of Fast Imaging Solar Spectrograph and Observation of the Solar Chromosphere

  • Park, Hyung-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.80.1-80.1
    • /
    • 2011
  • It is well known that chromospheric features are fine structured, short lived, and dynamic. Spectrograph-based observation have obvious advantage of getting physical properties of solar chromosphere than filter-based one. We developed and installed Fast Imaging Solar Spectrograph (FISS) attached on New Solar Telescope in Big Bear Solar Observatory. FISS have capabilities to take data with high time, spatial and spectral resolution at two wavelengths(Ha $6563{\AA}$ and CaII $8542{\AA}$) simultaneously. After FISS installation, we observed various chromospheric features : active regions, quiet regions, filaments/prominences and so on. As one of chromospheric studies, we analyzed solar prominences and got physical parameters by using simple radiative transfer modeling. The ranges of temperature and non-thermal velocities are found to be 7500-13000K and 5-11km/s, respectively.

  • PDF

Photospheric and Chromosphereic Oscillation in a Pore observed by NST/FISS

  • Cho, Il-Hyun;Cho, Kyung-Suk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.88.2-88.2
    • /
    • 2013
  • Exploration of the wave-mode identification and its propagating property in the solar pore is desirable to study the energy transfer in the solar atmosphere. The Fast Imaging Solar Spectrograph (FISS) installed at the New Solar Telescope (NST) is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for studying of dynamics of chromosphere. In this study, we inspect a relationship between the cross-sectional area and intensity of the pore at continuum (-0.4 nm) near the Ca II line. We find coherent oscillations of the area and intensity. They shows out-of-phase (~ 180 degree difference) in photosphere, which implies that the oscillation is fast sausage mode. We also investigate a relationship between LOS velocities above the pore obtained from the Ca II and the Ha line cores, and find no significant difference of the phase (~10 degree) between the formation heights of the lines in chromosphere.

  • PDF

The solar photospheric and chromospheric magnetic field as observed in the near-infrared

  • Collados, Manuel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.31.4-32
    • /
    • 2016
  • Observing the solar atmosphere with ground-based telescopes in the near-infrared has a number of advantages when compared to classical measurements in visible wavelengths. One of them comes from the magnetic sensitivity of spectral lines, which varies as ${\lambda}_g$, where g is the effective $Land{\acute{e}}$ factor of the transition. This wavelength dependence makes the near-infrared range adequate to study subtle spatial or temporal variations of the magnetic field. Spectral lines, such as the photospheric Fe I $1.5648{\mu}m$ spectral line, with a $Land{\acute{e}}$ factor g=3, have often been used in the past for this type of studies. To study the chromosphere, the Ca II IR triplet and the He I $1.0830{\mu}m$ triplet are the most often observed lines. The latter has the additional advantage that the photospheric Si I $1.0827{\mu}m$ is close enough so that photosphere and chromosphere can be simultaneously recorded with a single detector in a spectrograph. The instrument TIP (Tenerife Infrared Polarimeter) has been continuously operating since 1999 at the 70-cm German VTT of the Observatorio del Teide and has been recently moved to the 1.5-m German GREGOR. During all this time, results have been obtained concerning the nature of the weak photospheric magnetic field of the quiet sun, magneto-acoustic wave propagation, evolution with the cycle of sunspot magnetic fields, photospheric and chromospheric magnetic field in emerging regions, magnetic field in chromospheric structures such as filaments, prominences, flares, and spicules, etc. In this talk, I will review the main results obtained after all these observations and mention the main challenges for the future. With its novel polarization-free design and a complete suite of instruments aimed at simultaneous (imaging and spectroscopic) observations of the solar photosphere and chromosphere, the EST (European Solar Telescope) will represent a major world-wide infrastructure to understand the physical nature of all these phenomena.

  • PDF

CHROMOSPHERIC MAGNETIC RECONNECTION ON THE SUN

  • CHAE JONGCHUL;CHOI BYUNG-Kyu;PARK MIN-JU
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2002
  • Solar observations support that magnetic reconnect ion ubiquitously occurs in the chromosphere as well as in the corona. It is now widely accepted that coronal magnetic reconnect ion is fast reconnect ion of the Petschek type, and is the main driver of solar flares. On the other hand, it has been thought that the traditional Sweet-Parker model may describe chromospheric reconnect ion without difficulty, since the electric conductivity in the chromoshphere is much lower than that in the corona. However, recent observations of cancelling magnetic features have suggested that chromospheric reconnect ion might proceed at a faster rate than the Sweet-Parker model predicts. We have applied the Sweet-Parker model and Petschek model to a well-observed cancelling magnetic feature. As a result, we found that the inflow speed of the Sweet-Parker reconnect ion is too small to explain the observed converging speed of the feature. On the other hand, the inflow speeds and outflow speeds of the Petschek reconnect ion are well compatible with observations. Moreover, we found that the Sweet-Parker type current sheet is subject to the ion-acoustic instability in the chromosphere, implying the Petschek mechanism may operate there. Our results strongly suggest that chromospheric reconnect ion is of the Petschek type.

MORETON WAVES RELATED TO THE SOLAR ERUPTION OCCURRED ON 3 JUNE 2012 AND 6 JULY 2012

  • ADMIRANTO, AGUSTINUS GUNAWAN;PRIYATIKANTO, RHOROM
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.57-58
    • /
    • 2015
  • In this study, we present geometrical and kinematical analysis of Moreton wave observed in 2012 June 3rd and July 6th, recorded in H-${\alpha}$ images of Global Oscillation Network Group (GONG) archive. These large-scale waves exhibit different features compared to each other. The observed wave of June 3rd has angular span of about $70^{\circ}$ with a diffuse wave front associated to NOAA active region 11496. It was found that the propagating speed of the wave at 17:53 UT is about $931{\pm}80km/s$. The broadness nature of this Moreton wave can be interpreted as the vertical extension of the wave over the chromosphere. On the other hand, the wave of July 6th associated with X1.1 class are that occurred at 23:01 UT in AR NOAA11515. From the kinematical analysis, the wave propagated with the initial velocity of about $994{\pm}70km/s$ which is in agreement with the speed of coronal shock derived from type II radio burst, v ~ 1100 km/s. These two identified waves add the inventory of the large-scale waves observed in 24th Solar Cycle.

Quantitative estimation of the energy ux during an explosive chromospheric evaporation in a white light are kernel observed by Hinode, IRIS, SDO, and RHESSI

  • Lee, Kyoung-Sun;Imada, Shinsuke;Watanabe, Kyoko;Bamba, Yumi;Brooks, David H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.67.3-68
    • /
    • 2016
  • An X1.6 flare occurred in AR 12192 on 2014 October 22 around 14:06 UT and was observed by Hinode, IRIS, SDO and RHESSI. We analyze a bright kernel which produces a white light flare (WLF) with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WLF occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WLF, HXR peak, and evaporation flows indicates that the WLF was produced by accelerated electrons. To understand the white light emission processes, we calculated the deposited energy flux from the non-thermal electrons observed by RHESSI and compared it to the dissipated energy estimated from the chromospheric lines (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about $3.1{\times}10^{10}erg\;cm^{-2}s^{-1}$ when we assume a cut-off energy of 20 keV. The estimated energy flux from the temperature changes in the chromosphere measured from the Mg II subordinate line is about $4.6-6.7{\times}10^9erg\;cm^{-2}s^{-1}$, 15 - 22 % of the deposited energy. By comparison of these estimated energy fluxes we conclude that the continuum enhancement was directly produced by the non-thermal electrons.

  • PDF

Cross-Correlation of Oscillations in A Fragmented Sunspot

  • Lee, Kyeore;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.45.3-46
    • /
    • 2018
  • Oscillations in a sunspot are easily detected through the Doppler velocity observation. Although the sunspot oscillations look erratic, the wavelet analysis show that they consist of successive wave packets which have strong power near three or five minutes. Previous studies found that 3-min oscillation at the chromosphere is a visual pattern of upward propagating acoustic waves along the magnetic field lines. Resent multi-height observations help this like vertical study, however, we also focus on horizontal facet to extend three dimensional understand of sunspot waves. So, we investigate a fragmented sunspot expected to have complex wave profiles according to the positions in the sunspot observed by the Fast Imaging Solar Spectrograph. We choose 4 points at different umbral cores as sampling positions to determine coherence of oscillations. The sets of cross-correlation with three and five minutes bandpass filters during a single wave packet reveal interesting results. Na I line show weak correlations with some lags, but Fe I and Ni I have strong correlations with no phase difference over the sunspots. It is more remarkable at Ni I line with 3-min bandpass that all sets of cross-correlation look like the autocorrelation. We can interpret this as sunspot oscillations occur spontaneously over a sunspot at photosphere but not at chromosphere. It implies a larger or deeper origin of 3-min sunspot oscillation.

  • PDF