• Title, Summary, Keyword: chicken ovomucoid

Search Result 3, Processing Time 0.024 seconds

Ionizing Radiation Effect on the Carbohydrate Moiety of Chicken Ovomucoid (계란 ovomucoid의 탄수화물 부분에 미치는 이온화방사선의 영향)

  • Lee, Young-Keun;Kim, Jin-Kyu;Kim, Jae-Sung;Song, Hi-Sup;Charoen, Saovapong;Amornraksa, Kitti
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 1997
  • Radiation effects on carbohydrate moiety of chicken ovomucoid, a protease inhibitor as a typical allergenic glycoprotein of egg white, was observed. The trypsin inhibitory activity of chicken ovomucoid decreased exponentially and the inactivation was more significant irradiated in $N_2$ than in $O_2$. From the protein blotting, radiation caused protein degradation in $O_2$ and protein aggregation also in $N_2$. The patterns of carbohydrate blotting were also similar with that of protein blotting. Sugar chains in low molecular weight fraction (MW<5,000) were released by radiation and those in $O_2$ were higher than in $N_2$. From the HPLC patterns of the degradation of sugar chains, all peaks of oligosaccharides have the tendency to decrease with the increase of radiation dose and more remarkable in $O_2$ than in $N_2$. These results suggest that ionising radiation could cause the overall conformational changes of ovomucoid by the degradation and release of oligosaccharides.

  • PDF

Antigenicity Changes of Ovomucoid and Ovalbumin in Chicken Egg White by NaOH, Heat and Protease Tratments (NaOH, 열, 및 효소 처리에 의한 계란 난백 중 ovomucoid와 ovalbumin의 항원성 변화)

  • Ryu, Ju-Hyune;Park, Chun-Wuk;Lee, Jong-Mee;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.147-151
    • /
    • 2004
  • Antigenicities of ovomucoid (OM) and ovalbumin (OA) in chicken egg white (EW) before and after NaOH, heat, and pretense treatments were examined by competitive indirect enzyme-linked immunosorbent assay (ciELISA), using rabbit anti-OM and-OA antibodies, Enzymatic hydrolysis of EW did not effectively reduce antigenicity of OM, whereas that of OA was decreased to 1/5,000-1/100,000 by treatment of plant-derived or microbial pretenses. Heat treatment below $100^{\circ}C$ for 30min did not decrease antigenicity of OM, whereas that of OA in heated EW increased maximally to 100 times, Antigenicity of OM in EW effectively decreased by NaOH treatment, disappearing at over 1% NaOH, whereas that of OA increased. Additional heat treatment of NaOH-treated EW at $70^{\circ}C$ for 15min slightly reduced antigenicities of OM and OA.

Study on germline transmission by transplantation of spermatogonial stem cells in chicken

  • Lee, Young-Mok;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • /
    • pp.43-58
    • /
    • 2006
  • As a bioreactor, bird has proved to be most efficient system for producing useful therapeutic proteins. More than half of the egg white protein content derives from the ovalbumin gene with four other proteins(lysozyme, ovomucoid, ovomucin and conalbumin) present at levels of 50 milligrams or greater. And the naturally sterile egg also contains egg white protein at high concentration allowing for a long shelf life of recombinant protein without loss in activity. In spite of these advantages, transgenic procedures for the bird have lagged far behind because of its complex process of fertilized egg and developmental differences. Recently, a system to transplant mouse testis cells from a fertile donor male to the seminiferous tubules of an infertile recipient male has been developed. Spermatogenesis is generated from transplanted cells, and recipients are capable of transmitting the donor haplotype to progeny. After transplantation, primitive donor spermatogonia migrate to the basement membrane of recipient seminiferous tubules and begin proliferating. Eventually, these cells establish stable colonies with a characteristic appearance, which expands and produces differentiating germ cells, including mature spermatozoa. Thus, the transplanted cells self-renew and produce progeny that differentiate into fully functional spermatozoa. In this study, to develop an alternative system of germline chimera production that operates via the testes rather than through developing embryos, the spermatogonial stem cell techniques were applied. This system consisted of isolation and in vitro-culture of chicken testicular cells, transfer of in vitro-maintained cells into heterologous testes, production of germline chimeras and confirmation of germline transmission for evaluating production of heterologous, functional spermatozoa.

  • PDF