• Title, Summary, Keyword: bubble column bioreactor

Search Result 19, Processing Time 0.031 seconds

Effects of Various Bioreactors on Growth and Ginsenoside Accumulation in Ginseng Adventitious Root Cultures(Panax ginseng C.A. Meyer) (다양한 생물반응기 형태가 인삼(Panax ginseng C.A. Meyer) 부정근의 생장과 Ginsenoside 생산에 미치는 영향)

  • Kim, Yun-Soo;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.249-253
    • /
    • 2004
  • The type of air lift bioreactor affected the root growth in ginseng adventitious root cultures. Among bioreactors used in this experiment, bulb type bubble bioreactor (BU) was the best to increase root growth (41.92 g dry weight). The kLa value representing the oxygen transfer capacity from medium to explants (6.98 h$^{-1}$ ) in BU with 5 cm bubble column was higher than other bioreactors. On the other hand, cylindric tube bioreactor (CT) without bubble column resulted in minimum root growth (38.55 g dry weight) and kLa value (5.25 h$^{-1}$ ). Furthermore, the root growth (50.30 g dry weight) in BU with 10 cm bubble column more increased than 5 cm bubble column. However, the kLa value do not affected the secondary metabolite such as ginsenosides. These results show that the bubble column in air lift bioreactor increase kLa value and increased kLa value stimulate the growth of ginseng adventitious roots.

Effect of Aspergillus niger Pellets on Citric Acid Production in a Bubble Column Bioreactor

  • Kim, Seung-Hwan;Yoo, Young-Je;Kim, Eui-Yong;Kim, Min-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.172-176
    • /
    • 1995
  • Citrate is mainly produced from fungi and oxygen transfer has been known as one of the important factors in citric acid production. A bubble column bioreactor was used for citrate production after pellet was initially made using a stirred bioreactor for the inoculation. The relationship between the pellet size of Aspergillus niger and the oxygen transfer was elucidated by considering morphological characteristics of the pellet. The pellet size was determined by adjusting the impeller speed in the stirred bioreactor and the optimum diameter of the pellet was observed to be 2.2 mm under the experimental conditions. Pellet was maintained quite stable in the bubble column bioreactor and production of citric acid was significantly improved by maintaining optimal pellet conditions in the bubble column bioreactor.

  • PDF

The Growth of Transgenic Tobacco′s Suspension Culture and the Production of β-Glucuronidase in Bubble Column Bioreactor (Bubble column bioreactor에서 형질전환된 담배세포의 성장양상 및 β-Glucuronidase의 생산)

  • 김석우;이동근;현진원;이상현;하종명;하배진;이재화
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.577-583
    • /
    • 2002
  • The growth kinetics and the production of $\beta$-glucuronidase from transgenic tobacco's suspension culture was investigated in the flask culture and a 2.5 L bubble column reactor. The growth of bubble column reactor was similar to that of flask culture. However, in the bubble column reactor, the production of $\beta$ -glucuronidase reached 2850 U/mg (85-fold higher than that of flask culture). In both case, the production level of $\beta$ -glucuronidase was fluctuated, which was resulted from periodical degradation of the protein. Sucrose is important component in plant culture medium. Twice addition of sucrose in bubble column reactor could not improve cell growth, since other components in a medium were already depleted. However, the addition of sugar decreased cell size, which facilitated the operation of bioreactor. The production of $\beta$ -glucuronidase was continuously increased, however final concentration of $\beta$ -glucuronidase was similar to that without sucrose addition.

Biodegradation of Toluene using Biofilms in a Bubble Column Bioreactor

  • Choi, Yong-Bok;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.41-47
    • /
    • 1995
  • Biodegradation of toluene in liquid effluent stream was carried out using biofilms of Pseudomonas putida formed on celite particles in the bubble column bioreactor. Silicon rubber tubing was installed at the bottom of the bioreactor and liquid toluene was circulated within the tubing. Toluene diffused out of the tube wall and was transferred into the culture broth where degradation by biofilms occurred. The operating variables affecting the formation of biofihns on celite particles were investigated in the bubble column bioreactor, and it was found that formation of bifilm is favored by high dilution rate and supply rate of carbon source which stimulate the growth of initially attached cells. Continuous biodegradation of toluene using biofilms was stablely conducted in the bioreactor for more than one month without any significant fluctuation, showing a removal efficiency higher than 95% at the toluene transfer rate of 1.2 g/L/h.

  • PDF

Effect of Inorganic Salts and Various Bioreactors on the Production of Clavulanic Acid (무기염과 생물반응기의 종류가 Clavulanic acid의 생산에 미치는 영향)

  • Kim, Il-Chul;Kim, Seung-Uk
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.440-444
    • /
    • 1999
  • For the effecient production of clavulanic acid., a mutant strain Streptomyces clavuligerus KK was selected from Streptomyces clavuligerus ATCC 27064 through mutation with NTG. S. clavuligerus ATCC 27064 produced about 200 mg/L of calvulanic acid when the medium was composed of 1%(W/V) glycerol, 1.5%(W/V) soybean flour, 0.1%(W/V) $KH_2PO_4$, 0.2%(V/V) soybean oil. A selected mutant, S. clavuligerus KK, produced about 1150 mg/L of clavulanic acid in the same medium. After the addition of $MgSO_4$ to the basal medium, S. clavuligerus KK produced about 1550 mg/L of clavulanic acid, with shows about 1.3 times higher than that produced in the basal medium. In order to select the proper bioreactor for the production of clavulanic acid, a batch culture was performed in an airlift, a bubble column and an stirred tank bioreactors. In an airlift bioreactor, about 1350 mg/L of clavulanic acid was produced, in a bubble column bioreactor, about 1550 mg/L, in a stirred tank bioreactor, about 2200 mg/L, respectively. The production of clavulanic acid in stirred tank bioreactor was about 50% higer than that by an airlift and a bubble column bioreactors. According to this result, the stirred tank bioreactor was selected as a proper bioreactor.

  • PDF

Development of a Novel Bioreactor System for the Treatment of Gaseous Benzene

  • Yeom, Sung-Ho;Daugulis, Andrew J.;Yoo, Young-Je
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.73-76
    • /
    • 2000
  • A novel, continuous bioreactor system combining a bubble column (absorption section) and a two-phase bioreactor (degradation section) has been designed to treat a gas stream containing benzene. The bubble column contained hexadecane as an absorbent for benzene, and was systemically chosen considering physical, biological, environmental, operational and economic factors. This solvent has infinite solubility for benzene and very low volatility. After absorbing benzene in the bubble column, the hexadecane served as the organic phase of the two-phase partitioning bioreactor, transferring benzene into the aqueous phase where it was degraded by Alcaligenes xylosoxidans Y234. The hexadecane was then continuously recirculated back to the absorber section for the removal of additional benzene. All mass transfer and biodegradation characteristics in this system were investigated prior to operation of the integrated unit, and these included: the mass transfer rate of benzene in the absorption column, the mass transfer rate of benzene from the organic phase into the aqueous phase in the two-phase bioreactor, the stripping rate of benzene out of the two-phase bioreactor, etc. All of these parameters were incorporated into model equations, which were used to investigate the effects of operating conditions on the performance of the system. Several experiments were conducted to show the feasibility of this system. This process is believed to be very practical for the treatment of high concentrations of gaseous pollutants.

  • PDF

Effects of Elicitors on Scopolamine Production of Scopolia parviflora Nakai Adventitious Roots in Bubble Column Bioreactor

  • Jung, Hee-Young;Kim, Won-Jung;Kang, Seung-Mi;Park, Dong-Jin;Kang, Young-Min;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.378-383
    • /
    • 2004
  • Scopolamine and hyoscyamine are important anticholinergic compounds. To increase the productivity, we have selected various elicitors and developed culture system using a bubble column bioreactor (BCB). As the same manner of elicitation in flask cultures, the elicitors were introduced into BCB cultures and the productivity was investigated. Except the bacterial elicitor of Staphyllococcus aureus, the elicitors inhibited hyoscyamine production. In scopolamine production, the elicitors revealed different responses from the results obtained in flask cultures. The elicitors of KCl and Candida albicans less increased the production than flask cultures. However, methyl jasmonate and S. aureus showed stronger positive effects on tropane alkaloid production. In particular, S. aureus was the most effective elicitor on scopolamine production and the elicitor resulted in the highly increased production, approximately 10 times higher than the control culture.

Production of Itaconic Acid at Various Bioreactors (다양한 생물반응기에서 이타콘산의 생산)

  • 박승원;김승옥;이진석
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.304-308
    • /
    • 1994
  • A suitable culture method and bioreactor type for itaconic acid production were chosen by comparing the maximal concentration of itaconic acid produced in various systems. In batch culture, the maximal concentration of itaconic acid produced in a bubble column reactor was about 5% greater than that produced in stirred-tank or external-loop airlift reactor. These results were thought to be due to lower shear force and higher mass transfer efficiency in a bubble column reactor in comparison with other reactors. Moreover, the fed-batch mode in a bubble column was found to be a suitable one, producing about 25% higher concentration of itaconic acid compared to batch mode.

  • PDF

Inhanced Oxygen Supply of Xanthan Fermentations Using either Hydrogen Peroxide or Fluidized Particles in Tower Bioreators (탑형 생물반응기에서 과산화수소 또는 유동화 입자를 이용만 Xanthan 발효의 산소공급 향상)

  • 서일순
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2002
  • The decomposition of hydrogen peroxide was used for supplementing the oxygen during batch xanthan fermentations in a bubble column bioreactor in order to escape the oxygen transfer limitation that occurred at the high viscosity of culture broths. The xanthan production, however, was inhibited reversibly by dosing hydrogen peroxide. On the other hand, fluidized particles of glass beads with 8 mm diameter led to high gas-liquid oxygen transfer rates in three-phase fluidized beds, which resulted in higher space-time yields of the xanthan production compared to in the bubble column bioreactors.

Comparison of Growth Characteristics of Tricholoma matsutake Mycelium Among the Types of Air Bubble Bioreactor (공기부양식 생물반응기의 형태별 송이균사의 생장특성 비교)

  • Lee, Wi-Young;Ahn, Jin-Kwon;Ka, Kang-Hyeon;Kwon, Young-Jin
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • In order to select suitable bioreactor type inhibiting cell stress during submerged culture of Tricholoma matsutake mycelium, the growth characteristics and ergosterol contents were investigated using the external-loop type of air-lift bioreactor (ETAB), balloon type of air bubble bioreactor (BTBB) and column type of air bubble bioreactor (CTBB). Dry weights of the T. matsutake in the BTBB, ETAB and CTBB were 12 g, 11.4 g, and 9.5 g per 1 litter, respectively. BTBB, ETAB and CTBB reached stagnant phases 16, 20, and 24 days after cultivation, respectively, The BTBB was more suitable for liquid culture of T. matsutake mycelium compared to other bioreactors owing to much mycelia product and short culture period. The ergosterol contents produced by the mycelium in the bioreactors were in sequence of BTBB, CTBB, and ETAB at every growth phase. BTBB might affect the mycelium on producing the smallest size of pellets. BTBB and CTBB got the mycelium precipitated and coagulated under operation of bioreactor sparser, whereas ETAB shown no effect of above phenomenon. A renovated bioreactor combined between a balloon shape of BTBB and an external-loop of ETAB was developed to enhance the efficiency of culture technique.