• 제목, 요약, 키워드: breast cancer cell proliferation

검색결과 281건 처리시간 0.032초

The effects of human milk proteins on the proliferation of normal, cancer and cancer stem like cells

  • Kang, Nam Mi;Cho, Ssang-Goo;Dayem, Ahmed Abdal;Lee, Joohyun;Bae, Seong Phil;Hahn, Won-Ho;Lee, Jeong-Sang
    • 분석과학
    • /
    • v.31 no.6
    • /
    • pp.232-239
    • /
    • 2018
  • Human breast milk (HBM) provides neonates with indispensable nutrition. The present study evaluated the anti-cancer activity of diluted and pasteurized early HBM (< 6 weeks' lactation) on human breast cancer cell lines. The cell lines MCF7 and MDA-MB231 were exposed to 1 % HBM from the 1st, 3rd, and 6th weeks of lactation and exhibited reduced proliferation rates. As controls, breast cell lines (293T and MCF-10A), breast cancer cell lines (MCF-7 and MDA-MB-231), and $CD133^{hi}CXCR4^{hi}ALDH1^{hi}$ patient-derived human cancer stem-like cells (KU-CSLCs) were treated with prominent milk proteins ${\beta}$-casein, ${\kappa}$-casein, and lactoferrin at varying doses (10, 50, and $100{\mu}g$) for 24 or 48 hrs. The impact of these proteins on cell proliferation was investigated. Breast cancer cell lines treated with ${\kappa}$-casein and lactoferrin exhibited significantly reduced viability, in both a dose- and time-dependent manner. Interestingly, ${\kappa}$-casein selectively impacted only cancer (but not normal breast) cell lines, particularly the more malignant cell line. However, ${\beta}$-casein-exposed human breast cancer cell lines exhibited a significantly higher proliferation rate. Thus, ${\kappa}$-casein and lactoferrin appear to exert selective anti-cancer activities. Further studies are warranted to determine the mechanisms underlying ${\kappa}$-casein- and lactoferrin-mediated cancer cell-selective cytotoxic effects.

Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis

  • Zong, Xiangyun;Yang, Hongjian;Yu, Yang;Zou, Dehong;Ling, Zhiqiang;He, Xiangming;Meng, Xuli
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.595-600
    • /
    • 2011
  • Pax 6, a member of the paired box (Pax) family, has been implicated in oncogenesis. However, its therapeutic potential has been never examined in breast cancer. To explore the role of Pax6 in breast cancer development, a lentivirus based short hairpin RNA (shRNA) delivery system was used to knockdown Pax6 expression in estrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) breast cancer cells. Effect of Pax6 silencing on breast cancer cell proliferation and tumorigenesis was analyzed. Pax6-RNAi-lentivirus infection remarkably downregulated the expression levels of Pax6 mRNA and protein in MCF-7 and MDA-MB-231 cells. Accordingly, the cell viability, DNA synthesis, and colony formation were strongly suppressed, and the tumorigenesis in xenograft nude mice was significantly inhibited. Moreover, tumor cells were arrested at G0/G1 phase after Pax6 was knocked down. Pax6 facilitates important regulatory roles in breast cancer cell proliferation and tumor progression, and could serve as a diagnostic marker for clinical investigation.

Delphinidin이 인체 유방암세포 MDA-MB-231의세포증식 억제와 세포사멸 유도에 미치는 영향 (Delphinidin inhibits cell proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines)

  • 서은영
    • Journal of Nutrition and Health
    • /
    • v.46 no.6
    • /
    • pp.503-510
    • /
    • 2013
  • Breast cancer is the most common malignancy in women, both in the developed and developing countries. Anthocyanins are natural coloring of a multitude of foods, such as berries, grapes or cherries. Glycosides of the aglycons delphinidin represent the most abundant anthocyanins in fruits. Delphinidin has recently been reported to inhibit the growth of human tumor cell line. Also, delphinidin is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathion peroxidase activity. This study investigates the effects of delphinidin on protein ErbB2, ErbB3 and Akt expressions associated with cell proliferation and Bcl-2, Bax protein associated with cell apoptosis in MDA-MB-231 human breast cancer cell line. MDA-MB-231 cells were cultured with various concentrations (0, 5, 10, and $20{\mu}mol/L$) of delphinidin. Delphinidin inhibited breast cancer cell growth in a dose dependent manner (p < 0.05). ErbB2 and ErbB3 expressions were markdly lower $5{\mu}mol/L$ delphinidin (p < 0.05). In addition, total Akt and phosphorylated Akt levels were decreased dose-dependently in cells treated with delphinidin (p < 0.05). Futher, Bcl-2 levels were dose-dependently decreased and Bax expression was significantly increased in cells treated with delphinidin (p < 0.05). In conclusion, I have shown that delphinidin inhibits cell growth, proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines.

siRNA Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells

  • Huang, Wei-Yi;Chen, Dong-Hui;Ning, Li;Wang, Li-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1823-1827
    • /
    • 2012
  • The gene encoding the Nin one binding (NOB1) protein which plays an essential role in protein degradation has been investigated for possible tumor promoting functions. The present study was focused on NOB1 as a possible therapeutic target for breast cancer treatment. Lentivirus mediated NOB1 siRNA transfection was used to silence the NOB1 gene in two established breast cancer cell lines, MCF-7 and MDA-MB-231, successful transfection being confirmed by fluorescence imaging. NOB1 deletion caused significant decline in cell proliferation was observed in both cell lines as investigated by MTT assay. Furthermore the number and size of the colonies formed were also significantly reduced in the absence of NOB1. Moreover NOB1 gene knockdown arrested the cell cycle and inhibited cell cycle related protein expression. Collectively these results indicate that NOB1 plays an essential role in breast cancer cell proliferation and its gene expression could be a therapeutic target.

IGF-1 from Adipose-Derived Mesenchymal Stem Cells Promotes Radioresistance of Breast Cancer Cells

  • Yang, Hui-Ying;Qu, Rong-Mei;Lin, Xiao-Shan;Liu, Tong-Xin;Sun, Quan-Quan;Yang, Chun;Li, Xiao-Hong;Lu, Wei;Hu, Xiao-Fang;Dai, Jing-Xing;Yuan, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10115-10119
    • /
    • 2015
  • Purpose: The aim of this study was to investigate effects of adipose-derived mesenchymal stem cells (AMSCs) on radioresistance of breast cancer cells. Materials and Methods: MTT assays were used to detect any influence of AMSC supernatants on proliferation of breast cancer cells; cell migration assays were used to determine the effect of breast cancer cells on the recruitment of AMSCs; the cell survival fraction post-irradiation was assessed by clonogenic survival assay; ${\gamma}$-H2AX foci number post-irradiation was determined via fluorescence microscopy; and expression of IGF-1R was detected by Western blotting. Results: AMSC supernatants promoted proliferation and radioresistance of breast cancer cells. Breast cancer cells could recruit AMSCs, especially after irradiation. IGF-1 derived from AMSCs might be responsible for the radioresistance of breast cancer cells. Conclusions: Our results suggest that AMSCs in the tumor microenvironment may affect the outcome of radiotherapy for breast cancer in vitro.

ALEX1 Regulates Proliferation and Apoptosis in Breast Cancer Cells

  • Gao, Yue;Wu, Jia-Yan;Zeng, Fan;Liu, Ge-Li;Zhang, Han-Tao;Yun, Hong;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3293-3299
    • /
    • 2015
  • Background: Arm protein lost in epithelial cancers, on chromosome X (ALEX) is a novel subgroup within the armadillo (ARM) family, which has one or two ARM repeat domains as opposed to more than six-thirteen repeats in the classical Armadillo family members. Materials and Methods: In the study, we explore the biological functions of ALEX1 in breast cancer cells. Overexpression of ALEX1 and silencing of ALEX1 were performed with SK-BR3 and MCF-7 cell lines. Cell proliferation and colony formation assays, along with flow cytometry, were carried out to evaluate the roles of ALEX1. Results: ALEX1 overexpression in SK-BR3 breast cancer cells inhibited proliferation and induced apoptosis. Furthermore, depletion of ALEX1 in MCF-7 breast cancer cells increased proliferation and inhibited apoptosis. Additional analyses demonstrated that the overexpression of ALEX1 activated the intrinsic apoptosis cascades through up-regulating the expression of Bax, cytosol cytochrome c, active caspase-9 and active caspase-3 and down-regulating the levels of Bcl-2 and mitochondria cytochrome c. Simultaneouly, silencing of ALEX1 inhibited intrinsic apoptosis cascades through down-regulating the expression of Bax, cytosol cytochrome c, active caspase-9, and active caspase-3 and up-regulating the level of Bcl-2 and mitochondria cytochrome c. Conclusions: Our data suggest that ALEX1 as a crucial tumor suppressor gene has been involved in cell proliferation and apoptosis in breast cancer, which may serve as a novel candidate therapeutic target.

Estrogen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.566-571
    • /
    • 1997
  • To gain further insight into how estrogens modulate cell function, the effects of estrogen on cell proliferation were studied inhuman breast cancer cells. We examined the effects of estrogen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Ten nM estradiol markedly stimulated the proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $1.15{\pm}0.03 pmole/mg protein)$(over that of control. In T47D cells that contained low levels of estrogen receptor $0.23{\pm}0.05 pmole/mg protein)$, Ten nM estrogen slightly stimulated the proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by estrogen. These results showed their sensitivity to growth stimulation by estrogen correlated well with their estrogen receptor content. Also we examined the effect of estrogen on cellular progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. Ten nM estradiol showed maximal stimulation of progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. It is not clear whether these stimulations of progesterone receptor and plasminogen activator activity by estrogen are related to the estrogen stimulation of cell proliferation of MCF-7 cells. Studies with estrogen in human breast cancer cells in culture indicate that sensitivity to growth stimulation by estrogen correlates well with estrogen receptor contents.

  • PDF

Glaucocalyxin A Activates FasL and Induces Apoptosis Through Activation of the JNK Pathway in Human Breast Cancer Cells

  • Li, Mei;Jiang, Xiao-Gang;Gu, Zhen-Lun;Zhang, Zu-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5805-5810
    • /
    • 2013
  • This study was conducted to analyze the molecular mechanisms responsible for anti-proliferation effects of glaucocalyxin A in cultured MCF-7 and Hs578T breast cancer cells. The concentration that reduced cell viability to 50% (IC50) after 72 h treatment was derived and potential molecular mechanisms of anti-proliferation using the IC50 were investigated as changes in cell cycle arrest and apoptosis. Gene and protein expression changes related to apoptosis were investigated by semi-quantitative RT-PCR and western blotting, respectively. Involvement of phosphorylated mitogen-activated protein kinases and JNK signaling in regulation of these molecules was characterized by western blotting. Cell viability decreased in a concentration-dependent manner and the IC50 was determined as $1{\mu}M$ in MCF-7 and $4{\mu}M$ in Hs578T cell. Subsequently, we demonstrated that the GLA-induced MCF-7 and Hst578T cell death was due to cell cycle arrest at the G2/M transition and was associated with activation of the c-jun N-terminal kinase (JNK) pathway. We conclude that GLA has the potential to inhibit the proliferation of human breast cancer cells through the JNK pathway and suggest its application forthe effective therapy for patients with breast cancer.

Adiponectin Induces Growth Arrest and Apoptosis of MDA-MB­231 Breast Cancer Cell

  • Kang Jee Hyun;Lee Yoon Young;Yu Byung Yeon;Yang Beom-Seok;Cho Kyung-Hwan;Yoon Do Kyoung;Roh Yong Kyun
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1263-1269
    • /
    • 2005
  • Recently, it was reported that reduction in serum adiponectin levels is correlated with the incidence of breast cancer. As an effort to explain this, we screened various human breast cancer cell lines to identify those in which proliferation is directly controlled by adiponectin. Among the five tested cell lines, proliferation of MDA-MB-231 cancer cell was significantly suppressed by adiponectin within the range of physiological concentration. Furthermore, prolonged adiponectin treatment caused cell growth arrest and even apoptosis of MDA-MB-231. This result is the first to show that adiponectin can directly control cancer cell growth and provides a rationale for the theory that reduction in plasma adiponectin levels could be a risk factor for breast cancer.