• Title, Summary, Keyword: bone matrix

Search Result 475, Processing Time 0.041 seconds

Review on the Correlation between Bone Mass, Skinfold Thickness and the Volume of Urine collagen Peptide in Postmenopausal Women (폐경 후 여성의 골량과 피부두겹두께 및 뇨 콜라겐펩타이드 양의 관련성에 대한 고찰)

  • Park, Mi-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2001
  • The bone is composed of the bone matrix of collagen and hydroxyapatite, the mixture of calcium and phosphours. The bone tissue is considered to the special connective tissue that possesses extracellular matrix made by collagen fiber deposited with mineral complex. In order to maintain bone mass measured by the sum of bone matrix and hydroxyapatite, bone resorption by osteoclast during lifetime and bone remodeling to form bone by osteoblast in its resorption region repeat continuously. The osteoblast has a mesodermic fetal origin like fibroblast for the formation of form tissues. Two cells express identical genes and synthesize the identical collagen type I as the major component of the formation of bone matrix and skin. Therefore, it is considered that the decrease of skinfold thickness and the decrease of bone mass related to the age, the change of two tissues composed of collagen type I is caused by the same genetic mechanism. The decrease of bone mass is caused by the change of the amount and structure of bone matrix by several factors and the amount of minerals deposited on bone matrix. Especially, in case of female, the deficiency of estrogen by menopause makes these changes rapidly increased. The decrease of bone mass and skinfold thickness is due to the decrease of the amount of collagen and its structural change the common component of bone tissue and skin tissue. Therefore, the relationship of the amount of cross-linked peptide N-telopeptide, collagen metabolite which excretes as urine. Based upon the proved results about the significant relationship of bone mass, the amount of bone collagen, the amount of skin collagen and skinfold thickness, the bone mass may be expected through a facile determination of skinfold thickness.

  • PDF

EXPERIMENTAL STUDY ON TISSUE RESPONSE OF DEMINERALIZED XENOGENIC BONE MATRIX IN EXTRASKELETAL SITE (탈회된 인체 이종골 매식체의 조직 반응에 대한 실험적 연구)

  • Jin, Kuk-Byum;Kim, Soo-Nam;Um, In-Woong;Kim, Kue-He
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.14 no.3
    • /
    • pp.245-253
    • /
    • 1992
  • To evaluate the tissue response of demineralized and undimineralized xenogeneic bone-martrix graft in extraskeletal site, we prepared human bone as a implant matrix, and outbred mouse as a recipient. Before clinical application of bank bone of human in Wonkwang university, we should confirm the allogeneic bone grafts us a biologically useful bone graft substitutes, obtanined from the patients receiving oral and maxillofacial surgery. The clinical evaluation and histologic studies showed that both (demineralized and undemineralized) xenogeneic bone matrix grafts were not rejected and that they seemed to stimulate new bone formation at the transplanation site. Undemineralized xenogeneic bone marb6 grafts showed minimal bone induction and gradual demineralization with slow resorption and showed that the differentiation of cells showing fibroblastic activity adjacent to the sop tissue were slowly and less frequently than demineralized bone. Characteristical differences between the demineralized and undemineralized matrix were the appearance of foreign body giant cells (multinucleated giant cells) and the evidence of sloe resorption in undemineralized bone matrix.

  • PDF

Guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate: case series

  • Kim, Young-Kyun;Lee, Ji-Young;Kim, Su-Gwan;Lim, Seung-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.167-171
    • /
    • 2013
  • PURPOSE. The purpose of this case series was to evaluate the effect of guided bone regeneration using demineralized allogenic bone matrix with calcium sulfate. MATERIALS AND METHODS. Guided bone regeneration using Demineralized Allogenic Bone Matrix with Calcium Sulfate ($AlloMatrix^{TM}$, Wright. USA) was performed at the time of implant placement from February 2010 to April 2010. At the time of the second surgery, clinical evaluation of bone healing and histologic evaluation were performed. The study included 10 patients, and 23 implants were placed. The extent of bony defects around implants was determined by measuring the horizontal and vertical bone defects using a periodontal probe from the mesial, distal, buccal, and lingual sides and calculating the mean and standard deviation of these measurements. Wedge-shaped tissue samples were obtained from 3 patients and histologic examination was performed. RESULTS. In clinical evaluation, it was observed that horizontal bone defects were completely healed with new bones, and in the vertical bone defect area, 15.1% of the original defect area remained. In 3 patients, histological tests were performed, and 16.7-41.7% new bone formation was confirmed. Bone graft materials slowly underwent resorption over time. CONCLUSION. $AlloMatrix^{TM}$ is an allograft material that can be readily manipulated. It does not require the use of barrier membranes, and good bone regeneration can be achieved with time.

Study of bone healing pattern in extraction socket after application of demineralized dentin matrix material (자가치아 뼈 이식재의 발치와내 이식 후 골 치유 양상에 관한 연구)

  • Chung, Jae-Ho;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • Introduction: Research on dental bone graft material has been actively conducted. Recently, demineralized dentin matrix material has been developed and introduced. This study examined the effect of demineralized dentin matrix material on bone healing. Subjects and Methods: The patients who received no treatment after extraction were used as the control group and patients who underwent demineralized dentin matrix material application in the extraction socket after extraction were used as the experimental group. Panorama radiography was performed at the baseline and at 3.5 months after graft material placement and CT was taken at 3.5 months after graft material placement for a radiologic evaluation. Bony tissue specimens were collected from the alveolar crest in the middle of the extraction socket using a 2 mm trephine bur after 3.5 months for the histology and hostomorphometric study. Results: 1. On the panoramic view, a higher bone density was observed in the subject group. 2. On the panoramic view, the bone density increased significantly in the extraction socket, from the baseline to 3.5 months: a 7 and 10 gray-level scale was observed in the control and experimental group, respectively (P<0.05). 3. The CT view evaluation at 3.5 months revealed significantly higher bone density in the subject group than the control group (P<0.05). 4. The histological findings showed more active new bone and lamellar bone formation in the subject group. Dentin with osteoinduction ability and enamel with osteoconduction ability appeared. 5. On histomorphometric analysis, the subject group showed significantly more new bone, lamellar bone area and lower soft tissue area (P<0.05). The difference between the groups was significant (P<0.05). Conclusion: Bone healing was improved after the application of demineralized dentin matrix material and there was active new bone and lamellar bone formation.

Bone Induction by Demineralized Dentin Matrix in Nude Mouse Muscles

  • Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Purpose: This study examined the osteoinductive activity of demineralized human dentin matrix for nude mice. Methods: Twenty healthy nude mice weighing about 15 to 20 g were used for study. Demineralized human dentin matrix was prepared and implanted into the dorsal portion of nude mice (subcutaneous), which were sacrificed at two, four, and eight weeks after demineralized dentin matrix grafting and evaluated histologically by H&E and Masson trichrome staining. The specimens were also evaluated histomorphometrically. Results: The demineralized dentin matrix induced bone and cartilage formation independently in soft tissues. Histological examination showed bone-forming cells such as osteoblasts and fibroblasts at two, four, and eight weeks. Conclusion: These results suggest that demineralized human dentin matrix has osteoinductive ability, and is a good alternative to autogenous bone graft materials.

A STUDY OF EFFECTS OF BONE MORPHOGENETIC PROTEIN BONE REGENERATION OF IMPLANTS IN DOGS (성견에서 임프란트 매식시 골형성단백 사용에 따른 골재생에 관한 연구)

  • Jo Jin-Hee;Vang Mong-Sook;Lee Jong-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.4
    • /
    • pp.593-607
    • /
    • 1994
  • The purpose of this study is to evaluate the effect of the bone morphogenetic protein, bone matrix gelatin and collagen matrix on the amount and shape of generating new bone adjacent to the implant. Implants were inserted in the mandible of adult dogs at 2 months after teeth extraction. Artificial bony defects, 3mm in width and 4mm in depth were made at the mesial and distal side of implant. Experimental groups were divided into three groups ; Group 1 : Defects filled with collagen matrix and bone morphogenetic protein, Group 2 : Defects filled with bone matrix gelatin. Control group : Defects filled with only collagen matrix. After implantation, the animals were sacrificed at 1,3,5 and 10 weeks for light microscopic examination. For the fluorescent microscopic examination. each tertracycline Hcl and calcein were injected at 1, 3, 5, 8 and 10 weeks after implantation. The results obtained were as follows : 1. The molecular weight of bovine BMP was about 18,100 by hydroxyapatite chromatography. 2. Osseointegration was observed in experimental groups 1 & 2, and BMG and BMP had an excellent bone forming capability as a filling materials to the repair of the bone defects. 3. The degree of healing of bone defect area, the experimental group 1 showed more prominent bone formation than control group, and the control group showed fibrous connective tissue between the implant and the bone. 4. In the fluorescent microscopic findings, bone remodelling was observed regenerative lamellar bone at defect area in experimental group 1, and partial remodelling in experimental group 2, In the control group, fibrous connective tissue was observed between the implant and bone surface and sign of remodelling was not apperaed. Above results suggest that BMP has rapid osteoinductive property and can be used clinically as a bone substitute on bone defects around implants.

  • PDF

Measurement of Age-Related Changes in Bone Matrix Using 2H2O Labeling

  • Lee, Jeong-Ae;Kim, Yoo-Kyeong
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.40-45
    • /
    • 2005
  • Age-related changes in bone metabolism are well established by biochemical markers of bone matrix in serum and urine, but analysis of the residual bone matrix, which is still turning over, has not been investigated. In the present study, we measured in vivo rates of bone protein synthesis using a precursor-product method based on the exchange of ²H from ²H₂O into amino acids. Four percent ²H₂O was administered to mice in drinking water after intraperitonial (i.p) bolus injection of 99.9% ²H₂O. Mice were divided into the two groups: growing young mice were administered 4% ²H₂O for 12 weeks after an i.p bolus injection at 5 week of age, whereas weight stable adult mice started drinking 4% ²H₂O 8 weeks later than the growing group and continued 4% ²H₂O drinking for 8 weeks. Mass isotopomer abundance in alanine from bone protein was analyzed by gas chromatography/mass spectrometry. Body ²H₂O enrichments were in the range of 1.88-2.41% over the labeling period. The fractional synthesis rates (ks) of bone protein were 2.000±0.071%/d for growing mice and 0.243±0.014%/d for adult mice. These results demonstrate that the bone protein synthesis rate decreases with age and present direct evidence of age-related changes in bone protein synthesis.

Histological Study on the Interface of Bone and Implant (골과 임플란트 접촉면의 조직학적 연구)

  • Kim, Ju-Sung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This paper reports the morphological nature of the remodelled interface process between implants and surrounding bone after 1, 4, 6, 8 and 12 weeks of implantation of smooth machined implants into rat tibias. After 4 weeks of implantation, histochemical analysis showed that the new bone was growing in direct contact with the implant. In the forming process, the activatived osteoblast cells migrated toward the interface and colonized the surface at the contact areas. This immature woven bone, rich in osteocyte lacunae, was deposited directly onto the implant surface. Osteoblast activity was found to continue ill 12 weeks of implantation The osteoblasts in lacunar areas developed numerous processes and synthesized bone matrix, after all, surrounded by secreting matrix. At the 12th week, the amount of newly formed bone matrix between bone and implant increased in mineralization. The mineralized mature bone contained well organized collagen fibers with characteristic banding pattern bone tissue formation around the implant.

  • PDF

Effect of Enamel Matrix Derivative on Guided Bone Regeneration with Intramarrow Penetration (골수내천공을 동반한 골유도재생술시 법랑기질유도체의 효과)

  • Lee, Young-Jong;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.393-410
    • /
    • 2004
  • The purpose of this study was to investigate effect of enamel matrix derivative on guided bone regeneration with intramarrow penetration in rabbits. Eight adult male rabbits (mean BW 2Kg) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. Defects were assigned to the control group grafted with mixture of the same quantity of demineralized freeze-dried bone allograft and deproteinized bovine bone mineral. Then, guided bone regeneration was carried out using resorbable membrane and suture. Enamel matrix derivative applied to defects was assigned to the test group. And treated as same manners as the control group. At 1, 2, 3 and 8 weeks after the surgery, animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation. The results of this study were as follows : 1. At 1, 2 and 3 weeks, no differences were observed between the control group and the test group in the aspect of bone formation around bone graft. 2. Proliferation of blood capillary was faster in the test group than in the control group. 3. Bone regeneration in intramarrow penetration was faster in the test group than in the control group. 4. At 8 weeks, new osteoid tissue formation around bone graft was more prominent in the test group than in the control group. From the above results, enamel matrix derivative might be considered as the osteopromotion material and effective in the guided bone regeneration with intramarrow penetration.

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.