• Title, Summary, Keyword: benzyl isothiocyanate

Search Result 7, Processing Time 0.041 seconds

Inhibitory Effect of Benzyl Isothiocyanate on Proliferation in vitro of Human Glioma Cells

  • Zhu, Yu;Zhuang, Jun-Xue;Wang, Qin;Zhang, Hai-Yan;Yang, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2607-2610
    • /
    • 2013
  • Malignant glioma, also known as brain cancer, is the most common intracranial tumor, having an extremely high mortality and recurrence rate. The survival rate of the affected patients is very low and treatment is difficult. Hence, growth inhibition of glioma has become a hot topic in the study of brain cancer treatment. Among the various isothiocyanate compounds, it has been confirmed that benzyl isothiocyanate (BITC) can inhibit the growth of a variety of tumors, including leukemia, glioma and lung cancer, both inside and outside the body. This study explored inhibitory effects of BITC on human glioma U87MG cells, as well as potential mechanisms. It was found that BITC could inhibit proliferation, induce apoptosis and arrest cell cycling of U87MG cells. In addition, it inhibited the expression of SOD and GSH, and caused oxidative stress to tumor cells. Therefore, it is believed that BITC can inhibit the growth of U87MG cells outside the body. Its mechanism may be related to the fact that BITC can cause oxidative stress to tumor cells.

Antimicrobial Effects of Allyl Isothiocyanates on Several Microorganisms (휘발성 Allyl Isothiocyanate계 화합물의 항균 활성에 관한 연구)

  • Ahn, Eun-Sook;Kim, Ji-Hye;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.206-211
    • /
    • 1999
  • Volatile antimicrobial compounds, isothiocyanates (ITCs), were compared their antimicrobial activity against 9 strains, Listeria monocytogenes, Bacillus subtilis, Pseudomonas fluorescens, Escherichia coli, Erwinia carotovora, Saccharomyces cerevisiae, Candida albicans, Aspergillus oryzae and Penicillium roqueforti. And synergistic antimicrobial effect of ITCs was examined with acetic acid. Allyl isothiocyanate (AIT), benzyl isothiocyanate (BIT), and ethyl isothiocyanate (EIT) were more effective than other ITCs. MIC (minimum inhibitory concentration) of these compounds was $100{\sim}200\;{\mu}g/dish$ against microorganisms tested and their inhibitory actions were more effective in order of fungi>yeast>Gram-negative bacteria>Gram-positive bacteria. MIC of acetic acid was $50{\sim}500\;{\mu}g/dish$ as lower concentration than ITCs. Using a mixture of volatile antimicrobial compounds and acetic acid, the synergistic effect was increased in $2{\sim}10$ times than ITCs used solely.

  • PDF

Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

  • Hwang, Eun-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with $0.1{\sim}1.0{\mu}M$ BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; $0.5{\mu}M$ and $10{\mu}M$ NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with $0.1{\sim}2.0{\mu}M$ BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with $1{\mu}M$ and $2{\mu}M$ BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with $1{\mu}M$ and $2{\mu}M$ NAC-BITC caused 1.6-and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in $0.1{\sim}2{\mu}M$ BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in $0.1{\mu}M$ NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., $1{\sim}2{\mu}M$) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents.

Potential Mechanisms of Benzyl Isothiocyanate Suppression of Invasion and Angiogenesis by the U87MG Human Glioma Cell Line

  • Zhu, Yu;Zhang, Ling;Zhang, Guo-Dong;Wang, Hong-Ou;Liu, Ming-Yan;Jiang, Yuan;Qi, Li-Sha;Li, Qi;Yang, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8225-8228
    • /
    • 2014
  • Glioma is one of the most common tumors in China and chemotherapy is critical for its treatment. Recent studies showed that benzyl isothiocyanate (BITC) could inhibit the growth of glioma cells, but the mechanisms are not fully understood. This study explored the inhibitory effect of BITC on invasion and angiogenesis of U87MG human glioma cells in vitro and in vivo, as well as potential mechanisms. It was found that BITC could inhibit invasion and angiogenesis of human glioma U87MG cells by inducing cell cycle arrest at phase G2/M. It also was demonstrated that BITC decreased expression of cyclin B1, p21, MMP-2/9, VE-cadherin, CD44, CXCR4 and MTH1, the activity of the telomerase and $PKC{\zeta}$ pathway. Microarray analysis was thus useful to explore the potential target genes related to tumorigenic processes. BITC may play important roles in the inhibition of invasion and angiogenesis of human glioma cells.

Volatile Compounds Characterizing the Flavor of Korean Horseradish Roots (한국산(韓國産) Horseradish 뿌리의 휘발성 풍미 성분)

  • Kim, In-Sook;Kimlee, Mie-Soon
    • Journal of Nutrition and Health
    • /
    • v.18 no.4
    • /
    • pp.293-300
    • /
    • 1985
  • Volatile components of Korean horseradish roots harvested at different dates were prepared by steam distillation. Samples were examined by gas chromatography (GC) and combined gas chromatography-mass spectrometry (GC-MS). The major pungent constituent, allyl isothiocyanate was confirmed add tended to increase with delayed harvest time. Pungent principles also included allyl thiocyanate, 2-phenethyl, 2-butyl, 4- pentenyl, benzyl and 3-methylthiopropyl isothiocyanates. Infrared (IR) spectroscopy study showed that allyl isothiocyanate - thiocyanate interconversion did not occur under the condition of this study.

  • PDF

Molecular Cloning and Expression of Fusion Proteins Containing Human Cytochrome P450 3As and Rat NADPH-P450 Reductase in Escherichia coli

  • Chun, Young-Jin;Guengerich, F-Peter
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.249-257
    • /
    • 2002
  • Cytochrome P450 3As such as 3A4 and 3A5 metabolize a wide range of pharmaceutical compounds. The vectors for the expression of fusion protein containing an N-terminal human P450 3A4 or P450 3A5 sequences and a C-terminal rat NADPH-cytochrome P450 reductase moiety were constructed. These plasmids were used to express the fusion protein in Escherichia coli DH5$\alpha$ cells. High levels of expression were achieved (100~200 nmol/liter) and the expressed fusion protein in E. coli membranes were catalytically active for nifedipine oxidation, a typical enzymatic activity of P450 3A4. The NADPH-P450 reductase activities of these fusion protein were also determined by measuring reduction of cytochrome c. To fine a specific Inhibitor of P450 3A4 from naturally occurring chemicals, a series of isothiocyanate compounds were evaluated for the inhibitory activity of P450 using the fusion proteins in E. coli membranes. Of the five isothiocyanates (phenethyl isothiocyanate, phenyl isothiocyanate, benzol isothiocyanate, benzoyl isothiocyanate and cyclohexyl isothiocyanate) tested, benzoyl isothiocyanate showed a strong inhibition of P450 3A4 with an $IC_{50}$value of 2.8 $\mu\textrm{M}$. Our results indicate that the self-sufficient fusion protein will be very useful tool to study the drug metabolism and benzyl isothiocyanate may be valuable for characterizing the enzymatic properties of P450 3A4.

Antibacterial activity of isothiocyanates from cruciferous vegetables against pathogenic bacteria in olive flounder (십자화과 채소 유래 isothiocyanates의 넙치 어병세균에 대한 항균활성)

  • Ko, Mi-Ok;Ko, Jeong-Yeon;Kim, Mi-Bo;Lim, Sang-Bin
    • Korean Journal of Food Preservation
    • /
    • v.22 no.6
    • /
    • pp.886-892
    • /
    • 2015
  • The antimicrobial effects of ten isothiocyanates (ITCs) present in cruciferous vegetables and radish root hydrolysate were investigated against pathogenic bacteria from olive flounder. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured against two gram-positive bacterial strains (Streptococcus parauberis, S. iniae) and four gram-negative bacterial strains (Edwardsiella tarda, Vibrio ichthyoenteri, V. harveyi, Photobacterium damselae) by using a broth microdilution technique. The antibacterial activity of ITCs was in the order sulforaphane > sulforaphene > phenylethyl ITC > erucin > benzyl ITC > iberin > I3C > allyl ITC > phenyl ITC > hexyl ITC. The susceptibility of fish pathogens to ITCs was in the order of V. harveyi > E. tarda > P. damselae > S. parauberis > S. iniae > V. ichthyoenteri. Antimicrobial activity (MIC) of radish root hydrolysate was 0.250 mg/mL against S. iniae, 0.438 mg/mL against S. parauberis, and 0.500 mg/mL against both E. tarda and V. harveyi. The aliphatic ITCs were potent inhibitors of the growth of fish pathogens, followed by aromatic ITCs and indolyl ITC. The presence of a double bond in the chemical structure of ITCs decreased antibacterial activity, while ITCs with a thiol (-S-) group and a longer carbon chain increased antibacterial activity. These results suggest that ITCs have strong antibacterial activities and may be useful in the prevention of fish pathogens.