• Title, Summary, Keyword: anti-tumorigenesis

Search Result 38, Processing Time 0.047 seconds

Effect of Salvia miltiorrhiza Extract in Urethane-induced Lung Tumorigenesis in A/J Mice (단삼(丹蔘) 추출액이 Urethan으로 유발된 생쥐의 폐암에 미치는 영향)

  • Park, Jae-Seok;Kim, Hee-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.595-607
    • /
    • 2008
  • Objectives: The aim of this study was to determine the effects of Salvia miltiorrhiza (SM) extract in urethane-induced lung tumorigenesis in A/J mice. Methods : We examined change of body weight, histological, apoptosis, immunohistochemical and gene expression of cyclooxygenase (COX-2) in lung tumors. Mice were divided into 3 groups: normal, saline, and experimental group administered SM extract after injection with urethane. Results : Histological observation showed shrunken alveoli in the control group, but recovered from damage in the SM extract administered group. The COX-2 positive materials were observed in the smooth muscle of terminal bronchiole and alveoli from the control group, but these positive materials decreased in the SM extract treatment group. The results of electron microscopical observation, dilated capillary and degenerated endothelia were observed in the control group. The apoptotic nuclei increased more in the control group compared with the normal and SM extract administered groups. Serial sections of the whole lung showed solid and papillary tumors. The size and number of tumors decreased in the SM groups compared with the control groups. Conclusions : These results suggest the possibility that SM may exert an anti-tumor effect on urethane-induced lung tumorigenesis.

  • PDF

Cell Signaling Cascades as Prime Targets for Chemoprevention with Dietary Phytochemicals

  • Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • /
    • pp.92-93
    • /
    • 2003
  • Chemoprevention refers to the use of agents to inhibit, reverse, or retard tumorigenesis. Numerous phytochemicals present in edible plants have been reported to interfere with a specific stage of the carcinogenic process. Some antioxidative and anti-inflammatory substances derived from dietary or medicinal plants exert chemopreventive properties by targeting intracellular signaling molecules or events.(omitted)

  • PDF

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

  • Jo, Ukhyun;Kim, Hyungjin
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.669-676
    • /
    • 2015
  • Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconianemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.

Protective Effects of Scutellaria barbata Against Rat Liver Tumorigenesis

  • Dai, Zhi-Jun;Wu, Wen-Ying;Kang, Hua-Feng;Ma, Xiao-Bin;Zhang, Shu-Qun;Min, Wei-Li;Lu, Wang-Feng;Lin, Shuai;Wang, Xi-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.261-265
    • /
    • 2013
  • Scutellaria barbata D. Don (S. barbata), a traditional Chinese medicine, is used to treat cancers, inflammation, and urinary diseases. This study aimed to determine any protective effects of S. barbata crude extract (CE-SB) against rat liver tumorigenesis induced by diethylnitrosamine (DENA). Liver malfunction indices in serum were measured by biochemical examination. Hematoxylin and eosin staining was performed to examine liver pathology. Contents of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in liver homogenates to evaluate oxidative stress. The levels of liver malfunction indices in the CE-SB groups, especially in the CE-SB high dose group, were lower than that of the model group (P<0.05). The results from histological examination indicated that the number of liver nodules in the CE-SB groups decreased compared with the model group (P<0.05). Content of MDA determined in liver was significantly decreased, and level of SOD elevated by CE-SB. CE-SB can inhibit experimental liver tumorigenesis and relieve hepatic injury in rats.

Anti-Tumor and Immunoregulatory Effects of Fermented Papaya Preparation (FPP: SAIDO-PS501)

  • Murakami, Shinki;Eikawa, Shingo;Kaya, Savas;Imao, Mitsuko;Aji, Toshiki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3077-3084
    • /
    • 2016
  • Various beneficial effects have been described for fermented papaya preparation (FPP: SAIDO-PS501) based on its anti-oxidative and anti-inflammatory functions. The present study was designed to determine the effects of FPP on carcinogenesis in vivo, and immunomodulatory function in vitro. Mice were injected with RL male 1 cells subcutaneously or 3-methylcholantherene (MCA) intravenously to induce cancer and orally or intraperitoneally treated with FPP solution. Human peripheral blood mononuclear cells (PBMC) were obtained from healthy volunteers and patients with atopic dermatitis, treated with FPP, and subjected to measurement of cytokine production and changes in Foxp3-expressing regulatory T cell (Treg) stimulated with phytohemagglutinin (PHA). Administration of FPP suppressed tumor size and the incidence of malignancy. In vitro, treatment of PBMC with FPP induced IL-$1{\beta}$, $TNF{\alpha}$ and $IFN{\gamma}$ production. Moreover, FPP suppressed proliferation of PHA-stimulated Foxp3-expressing Treg. These results suggest that FPP has chemotherapeutic properties.

SIRT1: roles in aging and cancer

  • Kim, Eun-Joo;Um, Soo-Jong
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.751-756
    • /
    • 2008
  • Aging and cancer both occur as a result of accumulated cellular damage, and both are related to the regulation of specific genes in the damage response. Recent research has unveiled connections between the mechanisms of aging and cancer, but how to prevent the development of cancer and increase longevity remain unknown. SIRT1 (the mammalian Sir2), which has $NAD^+$-dependent class III histone deacetylase activity, may be a key gene linking the modulation of cancer and aging. SIRT1 has broad biological functions in growth regulation, stress response, tumorigenesis, endocrine signaling, and extended lifespan. Here, we focus on the current knowledge regarding the role of SIRT1 in aging and cancer, and discuss the implications of SIRT1 as a therapeutic target for the optimal balance between anti-aging and anti-cancer activities.

Anti-oxidant and Anti-tumor Activities of Crude Extracts by Gastrodia elata Blume (천마추출물의 항산화 및 항암 활성)

  • Heo Jin-Chul;Park Ja-Young;An Sang-Mi;Lee Jin-Man;Yun Chi-Young;Shin Heung-Mook;Kwon Taeg-Kyu;Lee Sang-Han
    • Korean Journal of Food Preservation
    • /
    • v.13 no.1
    • /
    • pp.83-87
    • /
    • 2006
  • Gastrodia elata Blume is a major imp0l1ant medicinal resource in Korea. In order to confirm the biological activities of Gastrodia elata Blume, we carried out various in vitro assays. Of them, anti-oxidant and anti-tumor activities were detected from assays. The prototype of Gastrodia elata Blume extracts was used for 1he evaluation of DPPH, FRAP, hydroxyradical scavenging assay as anti-oxidant assays, as well as anti-tumor asctivities as wound assay and invasion assay. As a result, the prototype of Gastrodia elata Blume extracts showed potent anti-oxidative activity and anti-tumor activity in vitro. These above results suggest that 1he Gastrodia elata Blume extracts could have potential to alleviate oxidation process, cell motility activity, and tumorigenesis.

Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model

  • Ju, Jaehyun;Kim, Yeung-Ju;Park, Eui Seong;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from $Gu\acute{e}rande$, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.

ZAS3 promotes TNFα-induced apoptosis by blocking NFκB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2

  • Shin, Dong-Hyeon;Park, Kye-Won;Wu, Lai-Chu;Hong, Joung-Woo
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.267-272
    • /
    • 2011
  • ZAS3 is a large zinc finger transcription repressor that binds the ${\kappa}B$-motif via two signature domains of ZASN and ZASC. A loss-of-function study showed that lack of ZAS3 protein induced accelerated cell proliferation and tumorigenesis. Conversely, gain-of-function studies showed that ZAS3 repressed $NF{\kappa}B$-activated transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Based on these observations, we hypothesize that ZAS3 promotes apoptosis by interrupting anti-apoptotic activity of $NF{\kappa}B$. Here, we present evidence that upon $TNF{\alpha}$ stimulation, ZAS3 inhibits $NF{\kappa}B$-mediated cell survival and promotes caspase-mediated apoptosis. The inhibitory effect of ZAS3 on $NF{\kappa}B$ activity is mediated by neither direct association with $NF{\kappa}B$ nor disrupting nuclear localization of $NF{\kappa}B$. Instead, ZAS3 repressed the expression of two key anti-apoptotic genes of $NF{\kappa}B$, TRAF1 and TRAF2, thereby sensitizing cells to $TNF{\alpha}$-induced cell death. Taken together, our data suggest that ZAS3 is a tumor suppressor gene and therefore serves as a novel therapeutic target for developing anti-cancer drugs.