• Title, Summary, Keyword: anti-inflammatory

Search Result 4,841, Processing Time 0.061 seconds

Anti-inflammatory activity of aqueous methanolic extract of Swietenia mahagoni (L.) Jacq. (Meliaceae) leaves

  • Roy, S;Besra, SE;Banerjee, B;Mukherjee, J;Vedasiromoni, JR
    • Oriental Pharmacy and Experimental Medicine
    • /
    • v.9 no.1
    • /
    • pp.74-82
    • /
    • 2009
  • Pharmacological investigations were carried out with aqueous methanolic extract (AME) of Swietenia mahagoni (L.) Jacq. (Meliaceae) leaves. Acute toxicity studies revealed that the $LD_{50}$ dose of AME was 600 mg/kg, i.p. AME was found to possess significant anti-inflammatory activity in acute, sub-chronic and chronic models of inflammation. AME selectively inhibited cyclooxygenase (COX)-2 activity, which is involved in arachidonic acid metabolism and biosynthesis of prostaglandins under inflammatory conditions. Treatment with AME significantly enhanced total peritoneal cell count and the number of macrophages in normal mice, which revealed that AME may also alter the immune response along with its anti-inflammatory effect. The saponins or the alkaloids present in AME may be responsible for the anti-inflammatory activity.

The Anti-Inflammatory Effects of Phytochemicals by the Modulation of Innate Immunity

  • Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.181-192
    • /
    • 2012
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways; myeloid differential factor 88 (MyD88) and Toll/IL-1R domain-containing adaptor inducing IFN-${\beta}$ (TRIF) leading to the activation of NF-${\kappa}B$ and IRF3. Numerous studies demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit NF-${\kappa}B$ activation induced by pro-inflammatory stimuli including lipopolysaccharide and tumor necrosis factor-${\alpha}$ ($TNF{\alpha}$). However, the direct molecular targets for such anti-inflammatory phytochemicals are not fully identified. In this paper, we will discuss about the molecular targets of phytochemicals in TLRs signaling pathways. These results present a novel anti-inflammatory mechanism of phytochemicals in TLRs signaling.

Ailanthoidol Derivatives and their Anti-inflammatory Effects

  • Lee, Na-Li;Lee, Jae-Jun;Kim, Jin-Kyung;Jun, Jong-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1907-1912
    • /
    • 2012
  • Ailanthoidol showed a strong $anti$-inflammatory effect in a previous result. Ailanthoidol derivatives were prepared for the $anti$-inflammatory test using Sonogashira coupling, iodine induced cyclization and Wittig reaction. $Anti$-inflammatory effects of the prepared ailanthoidol derivatives were examined in lipopolysaccharide (LPS)-stimulated RAW 264-7 macrophages. The results showed that some ailanthoidol derivatives inhibited significantly the production of inflammatory mediator nitric oxide.

Anti-inflammatory Effects of MeOH Extract of Corylopsis gotoana Uyeki (히어리의 항염증 효능)

  • Lee, Ha Na;Cha, Dong Seok;Jeon, Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • Corylopsis gotoana (Hamamelidaceae) has been used as a traditional medicine for the treatment various diseases including cold, edema and vomiting. However, previous studies regarding component analysis and pharmacological actions of C. gotoana are extremely limited until now. In this study, we investigated anti-inflammatory activities of the methanolic extract of the twigs of Corylopsis gotoana (MCG) both in vitro and in vivo. MCG effectively inhibited excessive NO production in IFN-${\gamma}$ and LPS-stimulated mouse peritoneal macrophages without notable cytotoxicity. In addition, we also found that MCG could attenuate the expression of inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We further tested in vivo anti-inflammatory activity of MCG using paw edema mouse model. Herein, MCG demonstrated significant suppression on the paw edema induced by both of trypsin and carrageenan. These results indicated that MCG has potent anti-inflammatory potential and may be useful for prevention and treatments of inflammatory diseases.

Anti-oxidant and anti-inflammatory effect of Allium Hookeri water extracts in RAW 264.7 cells (삼채(三菜) 물추출물이 RAW 264.7 세포의 항산화 및 염증반응에 미치는 영향)

  • Lee, Sangsoo;Han, Hyosang;Yoo, Jayeon;Nam, Myung Soo;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.35 no.4
    • /
    • pp.37-43
    • /
    • 2020
  • Objectives : Allium hookeri is a well-known traditional herbal remedy and its root used for treatment of inflammation and tumor. However, the mechanism of anti-inflammatory effect of Allium hookeri is still unknown. This study aims to examine the mechanism of anti-inflammatory effect of Allium hookeri on mouse macrophage cell line, RAW 264.7 cells. Methods : Anti-oxidant effect of water extract of Allium hookeri (WEAH) was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay. 3- (4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed to determine the effect of WEAH on cell viability in RAW 264.7 cells. In addition, anti-inflammatory effect of WEAH was investigated in RAW 264.7 cells. Inflammation of RAW 264.7 cells induced by lipopolysarccharide (LPS) treatment and expression levels of inflammatory cytokine interleukin 1 β (IL-1β) and interleukin 6 (IL-6) gene were analyzed using quantitative reverse transcription PCR (qRT-PCR) analysis. Furthermore, the phosphorylation of inhibitor of nuclear factor kappa B (IκBα) after LPS treatment with WEAH-treated RAW 264.7 cells was confirmed by immunoblot analysis. Results : WEAH showed a strong anti-oxidant effect and no cytotoxicity to RAW 264.7 cells up to 2 mg/㎖ concentration. The LPS-induced mRNA expression levels of IL-1β and IL-6 were decreased by WEAH treatment. Furthermore, the LPS-induced phosphorylation of IκBα is attenuated by WEAH treatment. Conclusions : Through experimental demonstration of anti-oxidant and anti-inflammatory effects of WEAH, we suggest that Allium hookeri is a valuable material for prevention and treatment of various inflammatory diseases.

Reduced Anti-inflammatory Activity of Acetylsalicylic Acid Maltol Ester, Aspalatone

  • Han, Byung-Hoon;Suh, Dae-Yeon;Yang, Hyun-Ok;Lee, Song-Jin;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.17 no.3
    • /
    • pp.166-169
    • /
    • 1994
  • The anti-inflammatory activity of acetylsalicylic acid maltol ester (aspalatone), a potential anti-thombotic agent, was studied using the several experimental animal models of inflammation. By oral administration, aspalatone was found to possess the weak anti-inflammatory activity in models of an acute inflammation, in which aspalatone showed approximately one-third to one-fourth of the anti-inflammatory activity of aspirin. Aspalatone (200 mg/kg/day) and aspirin (50 mg/kg/day), however, did not show the inhibitory activity against granuloma fomation and adjuvant-induced arthritis.

  • PDF

Studies on the Anti-inflammatory Effects of Drymaria cordata Willd

  • Mukherjee, Pulok K.;Mukherjee, Kakali;Bhattacharya, S.;Pal, M.;Saha, B.P.
    • Natural Product Sciences
    • /
    • v.4 no.2
    • /
    • pp.91-94
    • /
    • 1998
  • In folklore medicine Drymaria cordata Willd (Family-Caryophyllaceae) is reported to have laxative and anti-febrile properties along with anti-inflammatory activities. Sikkimis used this plant to treat all these ailments. The anti-inflammatory effect of the methanol extract of D. cordata was investigated against carrageenin, histamine, serotonin, dextran and $PGE_1$ induced rat hind paw oedema. It exhibited significant anti-inflammatory activity against all these phlogestic agents except $PGE_1$ in the order of carrageenin > serotonin > histamine. All these effects were compared with standard drug phenylbutazone in both the acute and chronic experimental models in albino rats.

  • PDF

Anti-nociceptive and Anti-inflammatory Properties of Ilex latifolia and its Active Component, 3,5-Di-caffeoyl Quinic Acid Methyl Ester

  • Kim, Joo Youn;Lee, Hong Kyu;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • The present study was conducted to investigate anti-nociceptive and anti-inflammatory effects of the leaves of Ilex latifolia Thunb (I. latifolia) in in vivo and in vitro. Writhing responses induced by acetic acid and formalin- and thermal stimuli (tail flick and hot plate tests)-induced pain responses for nociception were evaluated in mice. I. latifolia (50 - 200 mg/kg, p.o.) and ibuprofen (100 mg/kg, p.o.), a positive non-steroidal anti-inflammatory drug (NSAID), inhibited the acetic acid-induced writhing response and the second phase response (peripheral inflammatory response) in the formalin test, but did not protect against thermal nociception and the first phase response (central response) in the formalin test. These results show that I. latifolia has a significant anti-nociceptive effect that appears to be peripheral, but not central. Additionally, I. latifolia (50 and $100{\mu}g/mL$) and 3,5-di-caffeoyl quinic acid methyl ester ($5{\mu}M$) isolated from I. latifolia as an active compound significantly inhibited LPS-induced NO production and mRNA expression of the pro-inflammatory mediators, iNOS and COX-2, and the pro-inflammatory cytokines, IL-6 and $IL-1{\beta}$, in RAW 264.7 macrophages. These results suggest that I. latifolia can produce antinociceptive effects peripherally, but not centrally, via anti-inflammatory activity and supports a possible use of I. latifolia to treat pain and inflammation.

Acacia Honey Exerts Anti-Inflammatory Activity through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • /
    • pp.97-97
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B-{\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

  • PDF

Anti-Inflammatory Activity of Acacia Honey through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Son, Kun Ho;Jeong, Hyung Jin;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.612-621
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B$-${\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.