• Title/Summary/Keyword: anthracite

Search Result 215, Processing Time 0.289 seconds

Effects of Fly Ash Application to Soil on Growth of Sorghum (토양중 석탄회(石炭灰) 시용이 수수의 생육에 미치는 영향)

  • Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.334-339
    • /
    • 1995
  • To investigate the utilization of fly ash in agriculture, sorghum [Sorghum bicolor(L.) Moench] was used as the test crop. Soil was treated in pot experiments with anthracite and bituminous fly ash at 5 levels of 0, 6, 12, 18, and 24%, respectively. Growth status in terms of plant height and the number of nodes was improved in the order of bituminous treatment > anthracite treatment > control. The increment of fly ash had a positive effects on plant growth in both anthracite and bituminous treatment. The ratio of the senescent leaves to the all leaves during the maturing period was higher in fly ash treatments than in the control. As increasing the fly ash treatment, the ratio of senescent leaves was increased. Total yield was higher in the order of bituminous treatment > anthracite treatment > control. Grain yield also was higher in fly ash treatment than in the control. Bituminous fly ash treatments were more favourable in grain yield than anthracite. The increment of up to 12% fly ash to soil increased grain yield in both anthracite and bituminous. Application of bituminous fly ash could be recommended due to the fact that high pH of soil is favorable for growth of sorghum.

  • PDF

Development of Emission Factors for Greenhouse Gas CO2) from Anthracite Fired Power Plants in Korea (무연탄 화력발전소의 이산화탄소 배출계수 개발)

  • Jeon, Eui-Chan;Myeong, Soo-Jeong;Jeong, Jae-Hak;Lee, Sung-Ho;Sa, Jae-Whan;Roh, Gi-Hwan;Kim, Ki-Hyun;Bae, Wi-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.440-448
    • /
    • 2007
  • Although the anthracite power plant is an important source of greenhouse gas, research on this type of power plant has not been conducted much. The present study investigated the entire anthracite power plants in Korea and analyzed the emitted gas in connection with GC/FD and a methanizer in order to develop $CO_2$ emission factors. The study also sampled the anthracite to analyze the amount of carbon and hydrogen using an element analyzer, and to measure the calorie using an automatic calorie analyzer. The emission factors computed through the fuel analysis was 30.45 kg/GJ and that computed through the $CO_2$ gas analysis was 26.48 kg/GJ. The former is approximately about 15% higher than the latter. When compared the carbon content factors of anthracite with that of bituminous coal, the value of anthracite was 24% higher Compared with IPCC values, the emission factors by the fuel was 14% higher, and that by the emitted $CO_2$ gas was about 1.2% lower. More research is needed on our own emission factors of various energy-consuming facilities in order to stand on a higher position in international negotiations regarding the treaties on climate changes.

Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite Using TGA (열중량 분석기를 이용한 목재펠릿 및 국내무연탄의 연소 특성 조사)

  • Kim, Dong-Won;Lee, Jong-Min;Kim, Jae-Sung;Seon, Pyeong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.58-67
    • /
    • 2010
  • Combustion of the Korean Anthracite and wood-pellet was characterized in air atmosphere with variation of heating rate(5, 10, 20 and $30^{\circ}C/min$) in TGA. The results of TGA have shown that the combustion of the wood-pellet occurred in the temperature range of $200{\sim}620^{\circ}C$ which is much lower than that of Korean anthracite. Activation energies of the wood-pellet and Korean anthracite, determined by using Friedman method were 44.12, 21.45 kcal/mol respectively. Also, their reaction orders(n) and pre-exponential factors(A) were 5.153, 0.7453 and $4.01{\times}10^{16}$, $1.39{\times}10^6(s^{-1})$ respectively. In order to find out the combustion mechanism of the wood-pellet and Korean anthracite, twelve solidstate mechanisms defined by Coats Redfern Method were tested. The solid state combustion mechanisms of the woodpellet and Korean anthracite were found to be sigmoidal curve A3 type and a deceleration curve F1 type respectively. Also, from iso-thermal combustion($300{\sim}900^{\circ}C$) of their char, the combustion characteristics of their char was found. Activation energies of the their char were 27.5, 51.2 kcal/mol respectively. Also, pre-exponential factors(A) were $2.55{\times}10^{12}$, $1.49{\times}10^{10}(s^{-1})$ respectively. Due to the high combustion reactivity of wood-pellet compared with Korean anthracite, combustion atmosphere will be improved by co-combustion with Korean anthracite and wood-pellet.

Studies on the Reactivity of Korean Anthracites. (Part 1) Setting-Up of an Apparatus for Testing the Reactivity of Korean Anthracites (無煙炭의 反應成에 關한 硏究 (第1報) 反應成 試驗藏置의 試作)

  • Hahn, Tae-Hee;Lee, Chai-Sung;Shin, Sung-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 1962
  • The "reactivity" of coal is one of the important characteristics of a coal used as a process raw material as well as a fuel. In this study, the reactivity was measured in terms of the magnitude of the reaction rate constant in the reduction of carbon dioxide with coal. A reactivity-testing apparatus was designed and constructed, and its performance characteristics were investigated by using Korean anthracite and hard-wood charcoal. Experiments were carried out at temperatures ranging from 750 to 1100$^{\circ}C$ with pulverized Korean anthracite whose sizes range from 1 to 10mm in diameter. Results showed that the reaction rate constant was not appreciably affected by the particle size investigated, and the reactivities of the anthracite and the charcoal were found to be a function of reaction temperature alone. It was also found that a straight line was produced when the logarithm of the rate constant is plotted against the reciprocal of the absolute temperature. The reactivities of the charcoal were found to be 2 to 10 times higher than those of the anthracite at a temperature ranging from 750 to 1100$^{\circ}C$, and 90% of carbon dioxide was reduced to carbon monoxide by the anthracite at a temperature above 1050$^{\circ}C$.

  • PDF

The Effects of Anthracite Media Sphericity on Filtration Efficiency (안쓰라사이트 여재 원형도가 여과 효율에 미치는 영향)

  • Cheong, Won-suk;Choi, Suing-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.763-770
    • /
    • 2007
  • There are many design parameters affecting filtration efficiency such as filteration rate, media packing depth, size distribution, and so on. The sphericity, the ratio of the surface area of an equal volume sphere to the real surface area of the particles, is one of major physical characters of media. The effect of sphericity on the performance of anthracite filter has been investigated. Media from eight water treatment plants have been collected. The sphericity of each media has been calculated by using well known headloss equations such as Kozeny equation, Dahmarajah equation etc.. Columns packed with anthracite media having different sphericity have been used to compare headloss development, floc accumulation in the bed, particles in bed water, filtrate turbidities after backwash and so on. The repeated experiments have indicated that the sphericity of anthracite media may not have remarkable influence on the filter performance as it has been suspected. It also has been prospected in the experiment that the media of higher sphericity would store more particles in the bed and give better filtrate quality, if provided that the effective size and the size distribution of media would be the same.

Porosity and Electrical Resistivity of Formed Cokes Made from Anthracite and Phenolic resin (무연탄(無煙炭)과 페놀수지(樹脂)로부터 제조(製造)된 성형(成形)코크스의 기공율(氣孔率)과 전기저항율(電氣抵抗率))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2008
  • In this study, the porosity and electrical resistivity of the formed coke produced by sintering the mixture of domestic anthracite and phenolic resin were mainly investigated, when the effect of the amount of binder, the hydration temperature and time, the hardening temperature and time, sintering temperature and time, the particle size of anthracite, the grade of anthracite, and the mixing ratio of phenolic resin on the physical properties of the coke were studied. As a result, It was found that the electrical resistivity and porosity of the formed coke are varied in the range of $0.3\sim1.2\Omega{\cdot}cm$ of $10\sim30%$, respectively, in accordance with the variation of factors.

A study on Desuifurization by Anthracite-Bituminous coal blend combustion in a fluidized bed combustor -A desulfurization using natural limestone- (유동층 연소로에서 유, 무연탄 혼합연소시 탈황에 관한 연구 -천연석회석을 이용한 황산화물 제어-)

  • 조상원;민병철;정종현;전영화;김대영;정덕영
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.102-108
    • /
    • 1997
  • It has been studied that SO$_2$ removal efficiency of anthracite-bituminous coal blend combustion in a fludized bed coal combustor. The objectives of this study were to investigate SO$_2$ removal characteristics of coal blend combustion with Ca/S, anthracite fraction, bed temperature, and limestone size. The experimental results were presented as follows First, the effect of the desulfurization by the dia size of limestone was great and SO$_2$ removal efficiency was highest in limestone dia 631 $\mu$m. Second, as air velocity increased, the desulfurization rate decreased a little. But the difference of the desulfurization rate according to air velocity was not too large. As the height of fluidized bed combustor increased regardless of air velocity, SO$_2$ concentration tends to increase largely. Third, as Ca/S mole ratio incresed, SO$_2$ desulfurization rate incresed rapidly up to Ca/S mole ratio 3 while the desulfurization rates did not increse too largely in the range of more than the level. Forth, the bed temperature had a great effect on the desulfurization rate and the desulfurization rate tended to increase slightly as anthracite fraction increased.

  • PDF

An Analysis of the Demand Expansion Options for the Domestic Anthracite Coal (국내 무연탄의 수요개발 가능성 분석)

  • 최기련;강희정
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.102-110
    • /
    • 1992
  • The determination of production level of the domestic anthracite coal is an important issue in the national energy strategy. It is also closely related to the energy mix scenarios in the future. The objective of the paper is to discuss and analyze the options of expanding anthracite coal demand in the utility sector. The observed options are including; (1) New pulverized system of the 200 and 500 MW level, (2) Atmospheric Fluidized Bed Combustion (AFBC), and (3) Pressurized Fluidized Bed Combustion (PFBC). Special emphasis is placed on the considerations in estimating the effects on the electric system costs and government subsidies when the options are introduced in the utility sector.

  • PDF