• Title, Summary, Keyword: Yeast culture

Search Result 993, Processing Time 0.043 seconds

Utilization of Porcine Blood and Liver in Yeast Culture for Animal Diets and Effects of Yeast Culture on the Growth of Broiler Chicks (돼지혈액 및 간을 이용한 사료용 효모배양과 효모배양물이 육계성장에 미치는 영향)

  • 마정숙;심관섭;박강희
    • Journal of Animal Environmental Science
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Optimal conditions for utilizing the slaughtered porcine blood and liver for yeast culture and the effects of the yeast cultures on the growth of broiler chicks were investigated. The quantity of yeast cultured for 24hours in the BSG medium containing blood extracts containing 5% glucose and in the LSG medium containing liver extracts containing 5% glucose were higher by 4% and 10%, respectively, than that in the YEPD medium containing 1% yeast extracts, 2% bacto pepton and 2% glucose. Optimal concentrations of ammonium sulfate supplementation to the BSG medium to increase the quantity of yeast cultured for 24 and 48 hours were 100 mM(1.3%) and 50 mM(0.65%), respectively. The optimal pH for yeast culture in BSG medium ranged from 6 to 7. One percent supplementation of either ammonium sulfate or taurine to LSG medium increased the quantity of yeast by 18% and 9%, respectively, compared to no supplementation. The body weight of chicks fed with 2% and 4% yeast culture supplementations cultivated increased at the 4th week by 10%, with relative to no supplementation. The results from this study suggest that the slaughtered porcine blood and liver can be utilized for yeast culture which is used in animal diets.

  • PDF

Effects of Supplementary Yeast Culture(Saccharomyces cerevisiae, Pichia pastoris) on the Performance Small Intestinal Microflora and Serum IgG Concentration in Broiler Chickens (Yeast Culture(Saccharomyces cerevisiae, Pichia pastoris)가 육계의 생산성, 소장내 미생물 균총 및 혈청 IgG 농도에 미치는 영향)

  • Park, D.Y.;NamKung, H.;Baek, I.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.289-296
    • /
    • 2002
  • A broiler experiment was conducted to investigate the effect of supplementing yeast culture (Saccharomyces cerevisiae, Pichia pastoris) on the growth performance, small intestinal microflora and immune response in broiler chickens. One thousand hatched broiler chickens(Ross$^{(R)}$) were assigned to 6 treatments: control (basal diet), CTC; chlorotetracycline 100ppm, YC-SC; yeast culture(Saccharomyces cerevisiae) 0.3%, YC-PP; yeast culture(Pichia pastoris) 0.3%, RPPC-0.1; refined Pichia pastoris culture 0.1%, RPPC-0.3; refined Pichia pastoris culture 0.3%. There were no significant differences in growth, feed intake, feed efficiency and mortality among the treatments. However, chickens fed diets with yeast cultures showed numerically higher weight gain than those fed the control diets. Supplementation of yeast cultures and CTC improved feed efficiency and decreased mortality compared to control. Nutrient digestibilities were not affected by the dietary treatments. Total number of Lactobacilli in small intestine was higher while that of Cl. perfringens was lower with yeast culture treatments than control. Small intestine E. coli population of RPPC-0.3 treatment was significantly lower than that of the control. The serum IgG concentration tended to be higher in broilers fed yeast cultures than those fed the control and CTC diet. In conclusion, the supplementation of yeast culture products showed, although not significant but, numerical advantages in productivity and profile of microbial flora and serum IgG compared to the control and CTC supplementation.

Influence of Supplemental Dietary Yeast Culture on the Noxious Gas Emission in Broiler Houses and Performance of Broiler Chicks (효모배양물 첨가 사료가 계사내 유해가스 발생 및 육계의 생산성에 미치는 영향)

  • Park, J. H.;Ryu, M. S.;Kim, S. H.;Na, C. S.;Kim, J. S.;Ryu, K. S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • Two experiments were conducted to investigate the effect of dietary supplementation of yeast culture on the performance of broiler chicks and noxious gas emission in broiler houses. Two hundred forty and three hundred and twenty, one day old Cobb male broiler chicks in Expt 1 and Expt 2, respectively were alloted to four treatment levels of yeast culture (0, 0.1, 0.2, 0.4%). To each treatment, 60 birds were assigned in Expt 1 and 5 replicates of 16 birds each were assigned in Expt 2. Basal diets contained 21.5% and 19.0% CP, and 3,100kcal/kg ME for the starting and finishing periods, respectively. Ammonia and $CO_2$ gas emission were detected twice a day for seven days during the five week period of Expt 1. Weight gain, feed intake and feed efficiency were measured for five weeks in Expt 2. Intestinal microbes, blood cholesterol and ND antibody titer were examined at the end of Expt 2. In Expt 1, the concentration of $NH_3$ in the house of birds fed yeast culture tended to be lower than the control. It was significantly lower in the 0.4% yeast culture treatment than the control (P<0.05). $CO_2$ concentration was significantly lower in all yeast culture treatments regardless of its dietary supplemental level than the control (P<0.05). different from others. Feed efficiency (feed/gain), however, was significantly improved in all yeast culture treatments relative to that of the control for starting period (P<0.05) and that of 0.2% yeast culture treatment was significantly lower than those of the control and 0.4% for the overall period. Total number of E. coli in the ileum of birds fed yeast culture at 0.1 and 0.2% was significantly lower than those of the control and 0.4% in the ileum. The CFU of Lactobacillus spp. of birds fed yeast culture at 0.1% was higher in the cecum compared to other treatments (P<0.05). Total cholesterol level of chicks fed 0.1% yeast culture seemed to be lower compared to that of other treatments, whereas LDL-cholesterol level was significantly lower than those of the control and 0.4% treatment. ND antibody titer tended to be higher in the yeast culture treatments than the control, but was not significantly different. The results of these experiments indicated that 0.2% yeast culture may have a potential to reduce the noxious gas emission in broiler houses and maximize the performance of broiler chicks.

리보핵산 관련물질을 함유한 Yeast Extracts 제조에 Streptomyces faecalis MSF 배양액의 이용

  • 임억규
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.512-519
    • /
    • 1997
  • RNA accumulating strain of Torulopsis versatilis MT-1 was cultured in molasses medium for higher contents of RNA in cell. Yeast cells were harvested at logarithmic phase on synchronous culture. Yield of cells on dry base to input sugar was 59.5%. Crude protein content was 55.1% in cell. RNA content was 13.9%. Some problems found in the process for the preparation of yeast extracts were improved by the addition of culture broth of Streptomyces faecalis MSF which secrete RNase (5' nuclease and 5' adenylic acid deaminase). When the culture broth of S. faecalis MSF was added in autolysis process 46% of RNA in cell was converted to I and G(5' inosinic acid and 5' guanylic acid) in extract. By addition of 3-7% culture broth of S.faecalis MSF in autolysis or enzymolysis process at the start or early stage, RNA in extract was converted easily to I and G and protein in cells was easily extracted and hydrolyzed to amino acid. Taste of those yeast extracts was delicious. The yeasty smell in yeast extracts was removed. And cell debris was easily removed from extract.

  • PDF

Effects of Yeast Culture Supplementation to Gestation and Lactation Diets on Growth of Nursing Piglets

  • Kim, Sung Woo;Brandherm, Mike;Freeland, Mike;Newton, Betsy;Cook, Doug;Yoon, Ilkyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1011-1014
    • /
    • 2008
  • A total of 335 sows at a commercial operation (Hitch Pork Producers Inc, Guymon, OK) was used to determine dietary effects of yeast culture supplementation ($XPC^{TM}$, Diamond V Mills) on litter performance. Sows were grouped by parity (parity 1 to 12). Pigs within a group were then allotted to treatments. Treatments consisted of: CON (no added yeast culture) and YC (12 and 15 g/d XPC during gestation and lactation, respectively). Sows were housed individually and fed their assigned gestation and lactation diets from d 35 of gestation to d 21 of lactation. Sows were fed 2.0 kg/d during gestation and ad libitum during lactation. Voluntary feed intake was measured daily during lactation. At farrowing, numbers of pigs born total and alive were measured. Weights of litters were measured at birth and weaning on d 21 of lactation. Litter weight gain of the YC treatment was 6.9% greater (p<0.01) than that of the CON. However, voluntary feed intake of sows and litter size did not differ between treatments. This study indicates that dietary yeast culture supplementation benefits sow productivity by improving litter weight gain. At present, it is not confirmed if improved litter weight gain was due to milk production, which remains to be investigated.

Isolation of Higher Alcohol-Producing Yeast as the Flavor Components and Determination of Optimal Culture Conditions

  • Kwon, Dong-Jin;Kim, Wang-June
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.576-580
    • /
    • 2005
  • Ten yeast strains affecting doenjang flavor were isolated from soybean fermented foods (traditional meju and doenjang), among which Zygosaccharomyces sp. Y-2-5, showing excellent growth, glucose consumption, pH, and flavor production, was selected. Higher alcohols produced by Zygosaccharomyces sp. Y-2-5 related to flavor were 2-propanol, 1-propanol, 2-methyl-1-propanol, 1-butanol, and 3.3-dimethyl-2-butanol. Optimal culture conditions for Zygosaccharomyces sp. Y-2-5 were 10% (w/v) NaCl, pH 4.0, 3.0% (w/v) glucose concentration, and inoculation time day 0 or 15 doenjang fermentation.

Optimization of Food Waste Fermentation for Probiotic Feed Production with Yeast Kluyveromyces marxianus

  • Lee, Ki-Young;Yu, Sung-Jin;Yu, Seung-Yeng
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • /
    • pp.121-125
    • /
    • 2001
  • For the probiotic feed production, aerobic liquid fermentation of pulverized food wastes was attempted with a yeast Kluyveromyces marxianus. After grinding finely, optimal fermentation conditions of the substrate was investigated by shaking culture. The most active growth of the yeast was shown at solid content of 10%. The proper addition of urea(0.5g/l), o-phosphate(0.4g/l), molasses(4g/l), and yeast extract (1g/1) increased cell growth rate and viable cell count. For optimizing, the nutrients were all added to substrate and fermentation was carried in 2 litre jar fermenter. For the stimulation of hydrolyzing enzyme excretion, mixed culture with Aspersillus oryzae was also conducted. In 12 hours of fermentation, viable cell count of the yeast Kluyveromyces marxianus amounted to the number of 1.4 $\times$10$^{10}$ /1 in the culture medium.

  • PDF

Mass Production of Yeast Spores from Compressed Yeast

  • Lim, Yong-Sung;Bae, Sang-Myun;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.568-572
    • /
    • 2005
  • Saccharomyces yeast spores are more resistant to drying and storage than vegetative cells. For the mass production of yeast spores, compressed yeast was directly inoculated into a sporulation medium (SM). The effects of inoculum size and the addition of rice wine cake (RWC) into SM on the sporulation were examined using flasks. With $1\%$ inoculum of compressed yeast, $1.45{\times}10^8/ml$ of asci was obtained. The addition of $0.5\%$ RWC into SM improved the cell growth and spore yield, and the number of asci formed was $2.31{\times}10^8/ml$. The effects of culture temperature, temperature-shift, and concentrations of inoculum, potassium acetate, and RWC on the sporulation were also evaluated using a jar fermentor. The optimum temperature for spore formation was $22^{\circ}C$ where the number of asci formed was $2.46{\times}10^8/ml$. The shift of culture temperature from initial $30^{\circ}C$ for 1 day to $22^{\circ}C$ for 3 days increased the number of asci formed to $2.96{\times}10^8/ml$. The use of $2\%$ (w/v) inoculum of compressed yeast, $2\%$ potassium acetate, and $1\%$ (w/v) RWC in SM with the shift of culture temperature of initial $30^{\circ}C\;to\;22^{\circ}C$ resulted in $90\%$ sporulation ratio and formation of $6.18{\times}10^8\;asci/ml$.

Utilization of Egg Type Male Chicks From Hatchery to Produce Yeast Culture for Animal Feed. (부화부산물 수평아리 사체를 이용한 사료용 효모 배양에 관한 연구)

  • 심관섭;박강희;김정학
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.201-209
    • /
    • 2000
  • Optimal conditions to utilize egg type male chicks from hatchery for cultivating yeast(Saccharomyces cerevisiae) and the effects of the yeast culture on growth of broiler chicks were investigated. The protein concentration of the spent cockerel extracts was the highest when extracted for 72 hours. Optimal water volume added to the spent cockerel chicks for the extraction was 1.5 times to the cockerel chicks weight (v/w ratio). Lipid in the extracts from the spent cockerel chicks did not affect on the yeast growth. The number of yeast cultured in the SCELP2 medium containing spent cockerel extracts and 4 % sugarcane molasses was higher by 26 % than that in the YEPD medium containing 1 % yeast extract, 2 % bacto pepton and 2 % glucose. Also the number of yeast cultured in the SBYW2 medium containing SCEP2 medium containing SCELP2 and 4 % brewer's yeast waste was increased by 8 %, compared to that in the SCELP2 medium. Body weight gain of chicks fed 4 % yeast culture supplementations cultivated in the SBYW2 medium was increased at 5 weeks by 9 %, relative to no supplementation(P<0.05). The results from this study suggest that the spent cockerel chicks can be utilized as nitrogen sources to produce yeast culture for animal feed.

  • PDF

Effects of Yeast Culture Supplementation on Rice Straw Digestibility and Cellulolytic Bacterial Community in the Rumen (볏짚 조사료에 대한 효모 배양물 첨가가 반추위 소화율 및 섬유소 분해균의 군락 변화에 미치는 영향)

  • Sung, Ha Guyn
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.41-49
    • /
    • 2013
  • In vitro and in situ incubation studies were conducted to determine effects of yeast culture supplements (Saccharomyces cerevisiae) on cellulolytic bacterial function and fiber digestion in rice straw. In vitro dry matter digestibility of rice straw gradually increased according to supplemental levels of yeast culture (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0%). Digestibility of rice straw started to increase apparently when yeast culture was added more than 0.6% level (p<0.05). Also, we reconfirmed that in vitro dry matter digestibility was significantly increased by 0.6% of yeast culture addition in 4% NaOH treated and non-treated rice straws (p<0.05). When in situ dry matter digestibility was tested in Korean native goats fed basal diet or experimental diet which contained 1.0% of yeast culture, the yeast culture feeding improved in situ dry matter digestibility in both 4% NaOH treated and non-treated rice straws (p<0.05). In case of real-time PCR monitoring cellulolytic bacterial function, the bacterial population attached on rice straw showed the increasing trends with higher level of yeast culture spraying on rice straw. F. succinogenes and R. flavefaciens were significantly increased in accordance to spraying levels of yeast culture (0.0, 0.1 and 0.3%) at both 12 and 24 hrs of in situ incubation (p<0.05). R. albus was significantly higher population in yeast culture spraying than non-soraying at 12 hrs of in situ incubation (p<0.05). These bacterial populations were showed the increasing trends with digestibility enhancement of rice straw according to the higher levels of yeast culture supplement. Overall, these results clearly suggest that the presence of yeast culture result in noticeable increase of rice straw digestion, which is modulated via good effect on cellulolytic bacterial attachment to fiber substrates.