• Title, Summary, Keyword: Water-soluble ionic components

Search Result 38, Processing Time 0.065 seconds

A Study on the Deposition Amount of Water-soluble Ionic Components in Dustfall in Kwangju City (광주시 강하분진중 수용성 이온성분의 강하량에 관한 연구)

  • 신대윤;조선희;문옥란;임철수;강공언
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.124-129
    • /
    • 1996
  • In order to investigate the deposition chara.cteristics of water-soluble ionic components in dustfall in Kwangju city, dustfall samples were collected by deposit jar for one year from December 1992 to November 1993. The depositjon amount of dustfall and water-soluble ionic components ($SO_4^{2-}, NO_3^-, Cl^-, NH_4^+, Na^+, Ca^{2+}, Mg^{2+}, K^+$) were measured. The total deposition amount of dustfall was 10.0 ton/$km^2$/month and showed seasonal trend of Summer and Spring > Fall and Winter. The total deposition amounts of water-soluble components showed 2.41 ton/$km^2$/month and seasonal trend of Summer > Fall > Spring > Winter. Deposition amount of $SO_4^{2-}$ was 0.99 ton/$km^2$/month which makes up 41% of water-soluble components. The deposition amounts of dustfall and watersoluble components according to the sampling points were approximately similar to each other. From this result, it can be estimated that the deposition amounts of dustfall and water-soluble components in dustfall were more influenced by the seasonal variation than the regional emission characteristics of pollution source. The content of each ionic component to the deposition amount of water-soluble components showed in order of $SO_4^{2-} > Cl^- > NH_4^+ > Na^+ > Ca^{2+} = K^+ > NO_3^- > Mg^{2+}$ respectively.

  • PDF

Size Distribution of Water-Soluble Ionic Components in the Atmospheric Aerosols Collected in Jeju City, Korea (제주시 대기부유부진 중 수용성 이온성분의 입경별 분포특성)

  • Hu Chul-Goo;Song Jeong-Hwa;Lee Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1067-1078
    • /
    • 2004
  • Atmospheric particulate matters were collected by 8-stage non viable cascade impactor from October 2002 to August at Jeju City. Eight water-soluble ionic components $(Na^+,\;NH_{4}_{+},\;K^+,\;Ca{2+},\;Mg^{2+},\;CI^-,\;NO_{3}^-\;and\;SO_{4}^{2-})$ were analyzed by Ion Chromatography. The concentration of particulate matters and eight water-soluble ionic components were determined to investigate their size distributions. Particulate matters exhibited a tri-modal distribution with peak value around $0.9,\;4.0{\mu}m\;and\;9.5{\mu}m.$ In summer, the last peak value was lower than other season values likely due to particulate matter scavenged by rain water. Four ionic components $(Na^+,\;Ca^{2+},\;Mg^{2+}\;and\;CI^-)$ exhibited a bi-modal distribution in the coarse mode whereas three ionic components $(NH_{4}^+,\;K^+\;and\;SO_{4}^{2-})$ in the fine mode, with maximum peak value around $0.9{\mu}m.\;NO_{3}^-$ was found in both the coarse and the fine mode. The enrichment factor (E.F.) of each ionic components was calculated. Based upon E.F., it is considered that $Na^+,\;CI^-,\;and\;K^+$ in coarse paricle mode were delivered form oceanic source, but other components might have other source origins.

A Study on Water-soluble Components in the Dustfall Matter at Cheju and Ullung Island (제주도와 울릉도의 강하분진중 수용성 성분에 관한 연구)

  • Choi, Jae-Cheon;Kim, San;Lee, Min-Young;Lee, Sun-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.331-337
    • /
    • 1995
  • This study was carried out to investigate the chemical composition of dustfall at Cheju(mean sea level; 71.7m, 33$^{\circ}$17'N, 126$^{\circ}$10'E) and Ullung island(mean sea level; 22.1m, 38$^{\circ}$29'N, 130$^{\circ}$54'E) from October 1993 to september 1994. The dustfall matter samples were collected by deposit gauges. The ionic components of each samples was analyzed by Ion Chromatograpy (Dionex 4000i), While heavy metals by Inductively Coupled Plasma Atomic Emission Spectrometry(ICP/AES; Shimadzu ICP-4). The results for seasonal variation of dustfall matter matter total amount, water-soluble ionic components and water-soluble ionic components total deposition amount to two sites were compared each other. The seasonal variations of dustfall amount at Ullung and Cheju island were found in order of Spring>Winter>Fall>Summer, and the maximum of dustfall amount were during the Yellow Sand period. Also, Total amount of water-soluble components except for $F^{[-10]}$ were high in Cheju more than Ullung island.more than Ullung island.

  • PDF

Chemical Characteristics of Water Soluble Components in Fine Particulate Matter at a Gwangju area (광주지역 PM2.5 입자 수용성 성분의 화학적 특성조사)

  • Park, Seung Shik;Cho, Sung Yong;Kim, Seung Jai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • Water soluble organic and inorganic species are important components in atmospheric aerosol particles and may act as cloud condensation nuclei to indirectly affect the climate. To characterize organic and elemental carbon(OC and EC), water-soluble organic carbon(WSOC) and inorganic ionic species contents, daily $PM_{2.5}$ measurements were made during the wintertime at an urban site of Gwangju. Average concentrations of WSOC, $NO_3^-$, $SO_4^{2-}$ and $NH_4^+$, which are major components in the water-soluble fraction in PM2.5, are 2.11, 5.73, 3.51 and $3.31{\mu}g/m^3$, respectively, representing 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%) and 11.7%(3.8~18.6%) of the $PM_{2.5}$, respectively. Abundance of water soluble organic compounds ranged from 5.4 to 35.9% of total water soluble organic and inorganic components with a mean of 17.6%. Even though the sampling was performed during the winter, the average contributions of secondary OC and WSOC, as deduced from primary OC/EC(or WSOC/EC) ratio, were relatively high, accounting for 17.9%(0~44.4%) of the total OC and 11.2%(0.0~51.4%) of the total WSOC, respectively. During the sampling period, low $SO_4^{2-}/(SO_4^{2-}+SO_2$) ratio of 0.14(0.03~0.32) and relative humidity condition in the winter time suggest an possibility of impact of long-range transport and/or aqueous transformation processes such as metal catalyzed oxidation of sulfur, in-cloud processes, etc.

Characteristic of Water-soluble Components of PM10 at Taean and Gangneung Sites in Summer Season (태안과 강릉지역 여름철 PM10의 수용성 성분 특성)

  • Park, Seung-Shik;Ko, Jae-Min;Chung, Chang-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.291-302
    • /
    • 2011
  • [ $PM_{10}$ ]measurements were made at two coastal sites, i.e., Taean and Gangneung, for summer to examine the characterization of water-soluble organic carbon (WSOC) and inorganic ionic species, and to investigate their difference between the sites. The fractions of three major inorganic water-soluble components ($NO_3^-$, $SO_4^{2-}$, and $NH_4^+$) at Taean and Gangneung sites were 30.6% (16.2~62.0%) and 25.6% (13.0~52.5%) of the $PM_{10}$, respectively. $SO_4^{2-}$ is the most dominant species of water-soluble ions at both sites, accounting for up to 20.5% (9.1~44.9%) and 16.3% (5.5~34.2%) of their respective PM10 mass concentrations. Using the paired T-test, $PM_{10}$ (p<0.01), $NO_3^-$ (p<0.05), $SO_4^{2-}$ (p<0.01), $NH_4^+$ (p<0.001), and WSOC (p<0.05) concentrations exhibited strong fluctuations on a daily basis between Taean and Gangneung sites. Relationship between the concentrations of $SO_x$ ($SO_4^{2-}+SO_2$) and CO indicates that the slopes of $SO_x$ /CO were 0.007 and 0.019 in the Taean and Gangneung sites, respectively. The smaller $SO_x$/CO slope in the Taean site could be related to the aged air with wet scavenging of $SO_x$ during transport. The correlation between the concentrations of CO and WSOC suggests that WSOC observed in the Gangneung ($R^2$=0.82) be transported from combustion-related sources, while the WSOC at the Taean site could be formed through atmospheric processing of primary volatile organic species during transport.

Size Distribution Characteristics of Water-soluble Ionic Components in Airborne Particulate Matter in Busan (부산 도심지역 대기중 입자상물질의 크기분포에 따른 수용성 이온성분의 특성)

  • Park, Gee-hyeong;Lee, Byeong-kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.287-301
    • /
    • 2015
  • This study was conducted to investigate size distribution characteristics of water-soluble ionic components in the airborne particulate matter (PM) collected from an urban area in Busan using a MOUDI cascade impactor from March to October 2010. The inorganic constituents in the fine particles (${\leq}1.8{\mu}m$) predominantly consisted of sulfate, nitrate, ammonium, and potassium. Sulfate and ammonium concentrations showed a high correlation and similar equivalent concentrations in the fine modes including $0.18{\sim}0.32{\mu}m$, $0.32{\sim}0.56{\mu}m$, and $0.56{\sim}1.0{\mu}m$. This indicates that the main chemical component in the fine particles would be forms of ammonium sulfate such as $(NH_4)_3H(SO_4)_2$, $(NH_4)_2SO_4$, and $(NH_4)HSO_4$. Back trajectory analysis showed that relatively higher concentrations of ammonium, nitrate, and sulfate in the fine mode, compared to the coarse mode, are caused both by domestic sources and long-range transports originated from China continent. High concentration episodes of PM both in the fine mode and the coarse mode were attributed both by anthropogenic sources, such as ship emissions and traffic emissions, and by natural sources such as seawater (sea salt), respectively.

A Study on the Characteristics of Particulate Matter in the Coastal Regions (해안지역에서 입자상물질의 특성에 관한 연구)

  • 최민규;조기철;강충민;여현구;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.114-123
    • /
    • 1998
  • Particulate matters(less than 10 $\mu$m, PM10) at Kanghwa and Yangyang, which are located in the western and the eastern coastal regions in Korea, were measured in using low volume air sampler from December 1995 to November 1996, and their characteristics were investigated from the view point of background level.(and in order to characterize the particulate matters.) The particulate matters were analyzed for major water soluble ionic components(SO$_{4}^{2-}$, NO$_{3}^{-}$, Cl$^{-}$, Na$^{+}$, NH$_{4}^{+}$, K$^{+}$, Mg$^{2+}$ and Ca$^{2+}$) by ion chromatography. Mass concentrations of particulate matters were $48.77 \pm 22.45 \mug/m^{3}$ at Kanghwa and $54.04 \pm 32.98 \mug/m^{3}$ at Yangyang and SO$_{4}^{2-}$, NO$_{3}^{-}$ and NH$_{4}^{+}$ contributed largely to water soluble ionic components. nss(non sea salt)-SO$_{4}^{2-}$, contributed more than 95 percentage to SO$_{4}^{2-}$ and nss-K$^{+}$ and nss-Ca$^{2+}$ also contributed high percentages to K$^{+}$ and Ca$^{2+}$. It was supposed that most SO$_{4}^{2-}$, was originated from anthropogenic sources, and K$^{+}$ and Ca$^{+}$ were mainty originated from soil. The results of factor analysis suggested possibility of interpreting the correlation between air pollutants and regional characteristics.

  • PDF

A Study on the Development of Standard Method of Total Deposition Sampling in Air Pollutants - Spatial Distribution of Total Deposition by the Filtration-Sampling Method - (대기오염 총침착물의 채취방법 표준화 개발에 관한 연구 -여과식 채취방법을 통한 총침착물의 공간분포 특성-)

  • 박정호;조인철;김찬훈;서정민
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.489-496
    • /
    • 2002
  • The purpose of this study was to investigate spatial distributions of total deposition. A total number 79 samples were collected at 17 sampling sites from September 1999 to January 2000. Total (=wet+dry) atmospheric depositions were collected by filtered deposition sampler at sampling site (the Western Part of Kyongsangnam Province). In addition, the deposition of soluble and insoluble fraction was also investigated to find a suitable simplified collection method for a long-term monitoring of total deposition. The total depositions were measured soluble amount(mm/month), insoluble amount(kg/km$^2$/month), pH, conductivity(E.C.) and eight ionic components. The spatial distribution of deposition flux was to estimated by using a kringing analysis. The 17 sites mean fluxes of water soluble ionic components; SO$_4$$\^$2-/, Cl$\^$-/, NO$_3$$\^$-/, Na$\^$+/, NH$_4$$\^$+/, K$\^$+/, Mg$\^$2+/, Ca$\^$2+/ were 100.7∼315.6kg/km$^2$/month, 30.1∼234.3kg/km$^2$/month, 64.4∼ 139.4kg/km$^2$/month, 7.5∼68.3kg/km$^2$/month, 10.7∼48.7kg/km$^2$/month, 5.6∼27.9kg/km$^2$/month, 4.5∼17.5kg/km$^2$/month, 27.6∼81.7kg/km$^2$/month, respectively.

Characteristics of Total Atmospheric Deposition by the Filtration-Sampling Method at Coal-Fired Power Plant Area (여과식 채취방법에 의한 대기오염 총침착물의 특성 -석탄화력발전소 주변지역을 중심으로-)

  • 박정호;조인철;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • Total(=wet+dry) atmospheric depositions were collected by filtration-sampling method at 17 sampling sites of the coal-fired power plant area from September 1999 to January 2000. The soluble and insoluble fractions of deposition were also measured to investigate a suitability of simplified collection method for a long-term monitoring of total deposition. In the study, the 50% of sampled soluble fractions showed the electric conductivity (E.C.) of below 50 $\mu$S/cm and the 42% of them showed the lower pH than 5.0. The monthly mean fluxes of water soluble ionic components; S $O_4$$^{2-}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , N $a^{+}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$ were 168.4 kg/k $m^2$.month, 100.5 kg/k $m^2$.month, 88.6kg/k $m^2$.month, 31.3kg/k $m^2$.month, 25.6 kg/k $m^2$.month, 13.3 kg/k $m^2$.month, 8.7 kg/k $m^2$.month, 43.1kg/k $m^2$.month, respectively. The mean ionic concentration of all sample(n=79) was 314 $\mu$eq/ι, with contributions of 24.2% and 23.0% by [nss-C $a^{2+}$] and [nss-S $O_4$$^{2-}$]. The ratio of [N $O_3$$^{[-10]}$ ]/[nss-S $O_4$$^{2-}$] and [N $H_4$-C $a^{2+}$] were found to be 0.52 and 0.68, respectively.espectively.

Composition and Characteristics of ionic Components of Aerosols Collected at Gosan Site in Jeiu Island, Korea

  • Kang, Chang-Hee;Kim, Won-Hyung;Hu, Chul-Goo;Kim, Yong-Pyo;Shim, Shang-Gyoo;Hong, Min-Sun;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.177-186
    • /
    • 2003
  • The total of 1,454 aerosol samples were collected by high volume tape sampler at the Gosan Site in Jeju Island from 1992 to 1999, and the major water-soluble ionic components were chemically analyzed. The mean concentrations of nss-S $O_4$$^{2-}$, N $H_4$$^{+}$, and N $O_3$$^{[-10]}$ showed high values, which were 6.73, 1.45, and 1.45 ${\mu}{\textrm}{m}$/㎥, respectively, while $Ca^{2+}$ and $K^{+}$ concentrations were low with the values of 0.49 and 0.42 $\mu\textrm{g}$/㎥. The concentrations of most components increased in spring but decreased in summer, especially with the remarkable increase of $Ca^{2+}$ and N $O_3$$^{[-10]}$ concentrations in spring. The seasonal comparison of nss-S $O_4$$^{2-}$ concentrations showed higher values with the order of spring > fall 〉 winter〉 summer, but spring 〉 winter〉 fall 〉 summer for N $O_3$$^{[-10]}$ Meanwhile, the concentration levels of N $a^{+}$ and C $l^{[-10]}$ increased more in winter season. According to the investigation of wind direction effect, the concentrations of most aerosol ionic components showed higher values consistently at the westerly and northerly wind conditions. Based on the factor analysis, the atmospheric aerosols in the Gosan Site are considered to be largely affected by marine sources, followed by anthropogenic and soil sources.urces..