• Title/Summary/Keyword: Water Quality

Search Result 5,401, Processing Time 0.209 seconds

Water quality forecasting on upstream of chungju lake by flow duration (충주호 상류지역의 유황별 장래수질예측)

  • 이원호;한양수;연인성;조용진
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • In order to define about concern with discharge and water-quality, it is calculated drought flow, low flow, normal flow and wet flow in Chungju watershed from flow duration analysis. Water quality modeling study is performed for forecasting at upstream of Chungju lake. It is devided method of modeling into before and after the equipment of environmental treatment institution. And it is estimated the change of water quality. Before the equipment of environmental treatment, BOD concentration is increased from 23000 to 2006 years at all site and decrease on 2012 years. The rate of increasing BOD concentration is showed height between 2000 years and 2003 years most of all site. And after the equipment of environmental treatment, it is showed first grade of BOD water quality in most of sample site beside Jucheon river. The result of water quality modeling using drought flow showed that a lot of pollution occurred. And water quality using wet flow is good, so much discharge make more improve water quality than little discharge.

A Study on the Development of Water Quality Forecasting System in Upstream of Paldangdam (팔당댐 상류의 수질예보시스템 개발에 관한 연구)

  • Choi, Nam-Jeong;Seo, Il-Won;Kim, Young-Han;Lee, Myong-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1387-1391
    • /
    • 2007
  • In this study, water quality prediction that is necessary to water quality forecasting system is performed using 2-D river analysis models RMA-2 and RAM4. RAM4 is suitable to water quality forecasting system cause it is possible to put in the pollutants as a mass type boundary condition. Instant injections of pollutants at Yongdamdaegyo Bridge in Namhangang River are simulated and the behavior of pollutant cloud is observed. The effects of water quality accident to Paldang 2 water intake plants in Paldangho Lake is analyzed with time variation. And extra flow simulation is performed for mitigation of pollution. Several cases of water quality forecasting system at home and abroad are investigated and the direction of water quality forecasting system is presented.

  • PDF

A study on Water Quality Changes in Distribution System (Factor analysis of deterioration of water quality & Modelling of free chlorine) (상수도 배관망에서의 수질변화에 관한 연구 (수질악화의 영향인자 분석과 잔류염소 모델링))

  • Lee, Hyun Dong;Chung, Won Sik;Moon, Sook Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.59-66
    • /
    • 1997
  • Although it produces well-treated water in water treatment plant, water quality at the tap can be changed depending on the state of pipes. It is because water quality deteriorates as plant water passes through pipeline networks. Therefore, the improvement of not only water treatment technology but also O & M of water pipelines is required to supply good water to consumers. The purpose of the study was to obtain the basic data of control technology for water quality in pipes through investigating water quality in distribution system. We selected 11 sampling sites and investigated water quality from plant to endpoint of distribution system. we also simulated decreasing tendency of free chlorine through pipeline network. As the result of water quality test, all parameters were below allowable levels, but some parameters had the possibility of being over levels. So there must be more work to set up proper countermeasure for violable parameters.

  • PDF

A Study on Mathematical Model for Water Quality Forecasting at Anyang Stream (안양시 관내하천 수질모형 예측에 관한 연구)

  • Kim, Gab-Jin;Lee, Yang-Kyoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.112-123
    • /
    • 1997
  • The Anyang stream is one of the Han river in Seoul Metropolitan area. It is 35.1km long, has a basin area of $282.26km^2$ and touches seven cities of Kyounggido and some of Seoul Metropolitan area. The situations of Anyang stream have resulted in severe stream water pollution problems. The purpose of this study were to measure the hydraulic characteristics and water quality, to make the countermeasures to achieve the stream water quality, to suggest the future conditions to improve water quality trough the Hydrodynamic and Water Quality Modal(WASP4). As the result of Anyang stream water quality forecsat, they are follows. Sewerage systems in the watershed of the Anyang stream have to be amended for wrong systemn and constructed in the upstream area of Anyang. The discharge of industrial wastewater has to be throughly controlled from the upstream area of the Anyang stream. Hydrodynamic and Water Quality Model(WASP4) for this study revealed the future water quality of the Anyang stream by computer simulation.

  • PDF

Rubbish, Stink, and Death: The Historical Evolution, Present State, and Future Direction of Water-Quality Management and Modeling

  • Chapra, Steven C.
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2011
  • This study traces the origin, evolution, and current state-of-the-art of engineering-oriented water-quality management and modeling. Three attributes of polluted water underlie human concerns for water quality: rubbish (aesthetic impairment), stink (ecosystem impairment), and death (public health impairment). The historical roots of both modern environmental engineering and water-quality modeling are traced to the late nineteenth and early twentieth centuries when European and American engineers worked to control and manage urban wastewater. The subsequent evolution of water-quality modeling can be divided into four stages related to dissolved oxygen (1925-1960), computerization (1960-1970), eutrophication (1970-1977) and toxic substances (1977-1990). Current efforts to integrate these stages into unified holistic frameworks are described. The role of water-quality management and modeling for developing economies is outlined.

Characteristics and Correlation among Water Quality Parameters of Idong Reservoir Watershed (논문 - 이동저수지 유역의 수질 특성 및 항목간 상관관계 분석)

  • Kim, Hyung-Joong;Haam, Jong-Hwa;Kim, Dong-Hwan;Hong, Dae-Byuk
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.15-24
    • /
    • 2011
  • This study was carried out to analyze characteristics of water quality and correlation among water quality parameters in Idong reservoir used for agricultural water. The pH and concentrations of DO, SS, BOD, COD, TP, Chl-a in Idong reservoir almost met the water quality standards for agricultural water, but TN concentration exceeded the water quality standards for agricultural water. All of water quality items had no significant difference between horizontal points at 95% confidence level and the Idong reservoir was possible to be treated as the single water body. As NIP ratio of the Idong reservoir is 52, TP is a limiting nutrient salt. As TN exceeds the water quality standards, it is required to preserve TP below current state to prevent water bloom by eutrophication. Therefore, reduction of phosphorus from the watershed is necessary for controlling the eutrophication of Idong reservoir.

  • PDF

Water Quality Management of Agricultural Reservoirs Considering Effective Water Depth (농업용 저수지의 유효수심과 수질관리방안)

  • Kim, Hyung-Joong;Kim, Ho-Il
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2010
  • Water quality data for 10 years (2000~2009) from about 826 reservoirs that are operated as a agricultural water quality survey network were analyzed in order to seek water quality management plan based on physical and chemical characteristics of agricultural reservoirs. The 95% reservoirs that exceed agricultural water quality standard of Chl-a (35mg/ $m^3$) had effective water depth shallower than 5m. The reason was that the reservoirs had more inflows of nutrient salts from the watershed, bigger surface water area of weak structure to algae occurrence. As the reservoirs of effective water depth shallower than 5m cover 49% of benefited area for irrigation, it is critical for agricultural water quality management of the reservoirs. The water quality of reservoir with shallower than 5m effective water depth was worse than reservoir with deeper than 5m effective water depth. Therefore, it is desirable that effective water depth of reservoirs make more than 5m for water quality management by building the bank higher and dredging the bottom of reservoirs.

  • PDF

Development of Integrated Water Quality Management Model for Rural Basins using Decision Support System. (의사결정지원기법을 이용한 농촌유역 통합 수질관리모형의 개발)

  • 양영민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.103-113
    • /
    • 2000
  • A decision support system DSS-WQMRA (Decision Support System-Water Quality Management in Rural Area) was developed to help regional planners for the water quality management in a rural basin. The integrated model DSS-WQMRA, written in JAVA, includes four subsystems such as a GIS, a database, water quality simulation models and a decision model. In the system, the GIS deals with landuse and the location of pollutant sources. The database manages each data and supplies input data for various water quality simulation models. the water quality simulation model is composed of the GWLF( Generalized Watershed Loading Function), PCLM(Pollutant Loading Calculation Module) and the WASP5 model. The decision model based on mixed integer programming is designed to determine optimal costs and thus allow the selection of managemental practices to meet the water quality criteria. The methodology was tested with an example application in the Bokha River Basin, Kyunggi Province in Korea. It was proved that the integrated model DSS-WQMRA could be very useful for water quality management including the non-point source pollution in rural areas.

  • PDF

Study in the integrated watershade management for conservation of water resources(I) - Water Quality distribution and Environmental capacity of the Samchog Buk stream, Oship stream, Gagog stream nearby eastern coastal - (수자원 보전을 위한 유역통합관리 방안에 관한 연구(I) - 동해안 유역의 북천, 오십천, 가곡천 수계의 수질 및 환경용량 평가)

  • 허인량;정의호;권재혁
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.51-60
    • /
    • 2002
  • Concerning the water quality management plan about Buk-stream, Ohsip-stream and Gagok-stream water systems in this research, which objectives of abstract is as follows. The result of cleanness degree evaluation of water quality in this research, the first grade was 91% shared in Buk-stream water system. The most point of the middle and upper stream of Buk-stream was maintain extremely clean water quality. Among the researched water system, the first grade of water quality in Ohsip-stream water system was most poor, its first garde rate was 68%. In all water quality check point of Gagog-stream water system was accomplished extremely clean water quality condition of first grade of BOD. The calculation result of pollutant loading density, which were 8.2, 21.5, 4.0kg/day.$\textrm{km}^2$. respectively and basin of Buk-stream and Gagok-Stream have high development potentiality.

Assessment of seasonal variations in water quality of Brahmani river using PCA

  • Mohanty, Chitta R.;Nayak, Saroj K.
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Assessment of seasonal changes in surface water quality is an important aspect for evaluating temporal variations of river pollution due to natural or anthropogenic inputs of point and non-point sources. In this study, surface water quality data for 15 physico-chemical parameters collected from 7 monitoring stations in a river during the years from 2014 to 2016 were analyzed. The principal component analysis technique was employed to evaluate the seasonal correlations of water quality parameters, while the principal factor analysis technique was used to extract the parameters that are most important in assessing seasonal variations of river water quality. Analysis shows that a parameter that is most important in contributing to water quality variation for one season may not be important for another season except alkalinity, which is always the most important parameters in contributing to water quality variations for all three seasons.