• Title, Summary, Keyword: Water Deprivation

Search Result 56, Processing Time 0.047 seconds

The change of dopaminergic immunoreactive cells in telencephalon and diencephalon of mongolian gerbil by water deprivation (절수에 의한 mongolian gerbil 종뇌 및 간뇌에서 dopamine성 면역반응세포의 분포변화)

  • Song, Chi-won;Lee, Kyoung-youl;Park, Il-kwon;Jung, Ju-young;Kwon, Hyo-jung;Lee, Chul-ho;Hyun, Byung-hwa;Lee, Geun-jwa;Song, Woon-jae;Jung, Young-gil;Lee, Kang-iee;Kim, Moo-kang
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • Nowadays, mongolian gerbil is notably utilized for the research of brain and water deprivation because of a congenital incomplete willis circle structure in the brain, audiogenic seizure in low noise, and special cholesterol metabolism without water absorption for a long time. In this study, we are intend to identify the morphological changes of the catecholaminergic neuron of brain according to the time lapse in the condition of long term water deprivation. 55 mongolian gerbil were divided 10 groups(control, 1, 2, 3, 4, 5, 10, 15, 20, 42th day water deprivation group), of which each group include 5 mongolian gerbils and 5 normal mongolian gerbils in control group were also used for brain atlas as a control. The brains were observed by the immunohistochemical stain using the TH, DBH and PMNT antibody. The results were as followings; 1. The nerve fibers of the TH-immunoreactive neuron were observed only in the and corpus striatum of the telencephalon. 2. Intensity of the immunostain of the nerve fiber in the cerebral cortex and corpus striatum was decreased gradually day by day after water deprivation. 3. The TH-immunoreactive nerve cells were observed in the paraventricular and periventricular nucleus of the 3rd ventricular in the hypothalamus of mongolian gerbil but the number of nerve cells were decreased from the first day of the water deprivation to the 10th day and increased until the 20th day, after than redecreased from the 20th day by the continuous water deprivation. The number of nerve fibers in this area were increased in the first day, but decreased from the 2nd day of water deprivation. The shape and density of the dopamine secreting cells in the brain of mongolian gerbil by the immunoreactive stain were changed in the continuous water deprivation. In this results, we can conclude that dopamine concerned in the water metabolism of mongolian gerbil, and mongolian gerbil could be used as an animal model for the research of water deprivation.

  • PDF

The Effects of Water Deprivation on Cerebrospinal Fluid Constituents During Feeding in Sheep

  • Sunagawa, Katsunori;Weisinger, Richard S.;McKinley, Michael J.;Purcell, Brett S.;Thomson, Craig;Burns, Peta L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2001
  • The internal humoral factors in the central regulation of dry feed intake during water deprivation in sheep were investigated by measurement of cerebrospinal fluid (CSF) constituents. Five animals were fed dried alfalfa chaff for 2 hours once a day. Sheep in the water deprivation treatment were deprived of water for 28 hours, while the sheep in the control treatment were given free access to water. During the first hour of the 2 hour feeding period, a rapid reduction in blood volume occured in both treatments (water deprivation and free access to water). The CSF concentrations of Na, Cl and osmolality during the second hour of the 2 hour feeding period in both treatments were greater (p<0.01) than those during the first hour. The drinking behaviors in sheep were concentrated during the second hour of the 2 hour feeding period in periods of free access to water. Water intake during feeding in periods of free access to water was 1110 ml/2 h. The levels of increase in CSF osmolality with feeding during water deprivation were greater (p<0.01) than during periods of free access to water. The changes in CSF osmolality with feeding during water deprivation produced more vigorous thirst sensations in the brain compared to during periods of free access to water. The eating rates for the first hour of the allotted 2 hour feeding period were the same under both treatments. However, the eating rates for the second hour during water deprivation periods decreased significantly (p<0.05) compared to those during periods of free access to water. The decreased eating rates for the second hour during water deprivation may be due to the vigorous thirst sensations produced in the brain. The results suggest that the increase in CSF osmolality with feeding during water deprivation acts as a thirst and satiety factor in brain mechanisms controlling feeding to decrease dry feed intake in water-deprived sheep.

Physiological Relationship Between Thirst Level and Feed Intake in Goats Fed on Alfalfa Hay Cubes

  • Prasetiyono, Bambang W.H.E.;Sunagawa, Katsunori;Shinjo, Akihisa;Shiroma, Sadao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1536-1541
    • /
    • 2000
  • The present study was carried out to measure changes of feed intake and thirst level caused by water deprivation in goats fed on dry feed and to elucidate the relationship between those two parameters. Water deprivation significantly (p<0.01) decreased cumulative feed intake and rate of eating at 30, 60, 90 and 120 min, respectively, after feed presentation. Cumulative feed intake, after completion of 2 h feeding, was reduced by about 20, 21 and 64 % due to water deprivation during feeding for 2 h (WD2), for 22 h (WD22) and for 46 h (WD46), respectively, compared to free access to water (FAW). Compared to the FAW, WD2, WD22 and WD46 increased thirst level by about 5, 5 and 9 times, respectively. Mean thirst level (X, g/30 min) was negatively correlated with cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=1302-0.2 X, $r^2=0.97$, p<0.05). Water deprivation depressed plasma volume and there was a significant positive regression between plasma volume (X, ml) and cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=-1003+0.6 X, $r^2=0.99$, p<0.01). Mean plasma osmolality (X, mOsmol/l) correlated significantly and negatively with cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=27004-84.9 X, $r^2=0.95$, p<0.05). In conclusion, a decrease of feed intake during water deprivation is mainly due to an increase of thirst level quantitatively, and the act of feeding itself induces thirst more than the length of water-deprivation periods in goats fed on dry feeds. The present findings suggest that plasma osmolality and plasma volume which affect thirst level are involved in the decrease of feed intake in water-deprived goats.

Behavioral and physiological changes during heat stress in Corriedale ewes exposed to water deprivation

  • Nejad, Jalil Ghassemi;Sung, Kyung-Il
    • Journal of Animal Science and Technology
    • /
    • v.59 no.7
    • /
    • pp.13.1-13.6
    • /
    • 2017
  • This study was conducted to investigate the behavioral and physiological changes of heat stressed Corriedale ewes exposed to water deprivation. Nine Corriedale ewes (average $BW=45{\pm}3.7kg$) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned into three groups (9 sheep per treatment) according to a $3{\times}3$ Latin square design for 3 periods with 21-d duration for each period. The control (CON) group was given free access to water, 2 h water deprivation (2hWD), and 3 h water deprivation (3hWD) following feeding. No differences were found in fecal excretion frequency, standing frequency (number/d), and sitting frequency among the groups (p > 0.05). Measurements of standing duration (min/d) and urine excretion frequency (number/d) showed a significant decrease whereas sitting duration (min/d) showed a significant increase in the 2hWD and 3hWD groups when compared with the CON group (p < 0.05). Fecal score and heart rate (number/min) were not different among the groups (p > 0.05). However, respiratory rate (number/min) and panting score were found to be significantly higher in the 2hWD and 3hWD groups than in the CON group (p < 0.05). It is concluded that water deprivation following feeding intensifies physiological heat stress related indicators such as respiratory rate and panting score and changes behavioral parameters such as water intake and urine excretion frequency in heat stressed ewes. Daily adaptation to the extreme environmental conditions may occur actively in ewes.

The Study on the Ultrastructure and Distribution of Dopaminergic Cells in the Brain of Mongolian Gerbil after Water Deprivation (절수에 의한 Mongolain gerbil 뇌 Dopamine성 면역반응세포의 분포와 미세구조의 변화에 관한 연구)

  • Song, Chi-Won;Lee, Kyoung-Youl;Park, Il-Kwon;Kwon, Hyo-Jung;Kim, Moo-Kang;Lee, Kang-Lee
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.193-204
    • /
    • 2000
  • Nowadays, mongolian gerbil is widely utilized in the research of brain and water deprivation because of congenitally incomplete Willis' circle, audiogenic seizure in low noise, and special cholesterol metabolism without water absorption for a long time. In this study, we intended to identify the time lapse changes in the general morphoogy and ultrastructure of the catecholaminergic neurons of mongolian gerbil brain in after long-term water deprivation. Fifteen mongolian gerbils were divided into 3 groups (5, 10, and 20-day water deprivation groups), each with 5 mongolian gerbils. Additional 5 mongolian gerbils which received water without limitation were used as a control. The brain sections were immunostained using tyrosine hysroxylase (TH), $ dopamine-\beta-hydroxylase$ (DBH), and phenylethanolamine-N-methyltrasferase (PMNT) antibodies. And immunoreactive cells were observed by electromicroscopy for the ultrastructural changes . The TH-immunoreactive (TH-IR) nerve cells were observed in the para- and peri-ventricular nucleus of the 3 rd ventricle in the hypothalamus and the substantia nigra. The number of TH-IR neurons in these areas was decreased from the 5th day of the water deprivation to the 10 th day and reincreased until 20 th day water deprivation. The shape and density of the dopamine-secreting cells identified by immunohistochemistry showed changes in the continuous water deprivation. Electron microscopy revealed a round nucleus in the neurons of control group but 5-day water deprivation group showed a dense and irregularly shaped nucleus. Also in the 5-day water-deprived group, mitochondria was decreased in number and junctins were disappered. Endoplasmic reticulum, Golgi complex did not show changes after water-deprivation. In this results, we can conclude that dopamine are involved in the water metabolism in mongolian gerbil, and mongolian gerbil could be used as an animal model for the researches of water deprivation.

  • PDF

Effect of Brain Angiotensin II Receptor Antagonists and Antisense Oligonucleotide on Drinking and Renal Renin in Rats

  • Cho, Hyeon-Kyeong;Yang, Eun-Kyoung;Han, Hee-Suk;Lee, Won-Jung;Phillips, M. Ian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.137-142
    • /
    • 2000
  • The physiological roles of brain angiotensin II in mediating water deprivation-induced drinking and in regulating renal renin release were assessed in male Sprague-Dawley rats. Specific $AT_1$ receptor antagonists, losartan and SK 1080, and antisense oligonucleotide (AS-ODN) directed to $AT_1$ receptor mRNA were intracerebroventricularly (i.c.v.) administered in conscious unrestrained rats. When water was given 20 min after i.c.v. injection of $AT_1$ receptor antagonists in 48-h water-deprived rats, losartan and SK 1080 produced approximatly 20% and 50% decrease in 1-h water intake, respectively. In contrast, i.c.v. treatment of the AS-ODN to $AT_1$ receptor mRNA for 24-h did not alter 1-h water intake in 24-h water-deprived rats, but prevented the increase in overnight water intake after 24-h water-deprivation. Six-day i.c.v. treatment of AS-ODN did not alter either the basal plasma renin concentration or renal cortical levels of renin and renin mRNA. The present results suggest that endogenous brain Ang II plays an important role in thirst and water intake through $AT_1$ receptors, but further studies are required to elucidate its regulatory role in renal renin synthesis.

  • PDF

Effects of Glucose Supplementation on the Pharmacokinetics of Intravenous Chlorzoxazone in Rats with Water Deprivation for 72 Hours

  • Kim, Yu-Chul;Kim, Eun-Jung;Lee, In-Chul;Kim, Sang-Geon;Lee, Myung-Gull;Kim, So-Hee
    • Proceedings of the PSK Conference
    • /
    • /
    • pp.308.2-309
    • /
    • 2003
  • In rats with water deprivation for 72 h (rats with dehydration), hepatic cytochrome P450 2E1 (CYP2E1) was 3-fold induced with an increase in mRNA, and glucose supplementation instead of food during 72-h water deprivation inhibited the CYP2E1 induction. Chlorzoxazone (CZX) is metabolized to 6-hydroxychlorzoxazone (OH-CZX) mainly by CYP2E1 in rats. (omitted)

  • PDF

Cell Age Optimization for Hydrogen Production Induced by Sulfur Deprivation Using a Green Alga Chlamydomonas reinhardtii UTEX 90

  • KIM , JUN-PYO;KANG, CHANG-DUK;SIM, SANG-JUN;KIM, MI-SUN;PARK, TAI-HYUN;LEE, DONG-HYUN;KIM, DUK-JOON;KIM, JI-HEUNG;LEE, YOUNG-KWAN;PAK, DAE-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Under sulfur deprived conditions, PS II and photosynthetic $O_2$ evolution by Chlamydomonas reinhardtii UTEX 90 are inactivated, resulting in shift from aerobic to anaerobic condition. This is followed by hydrogen production catalyzed by hydrogenase. We hypothesized that the photosynthetic capacity and the accumulation of endogenous substrates such as starch for hydrogen production might be different according to cell age. Accordingly, we investigated (a) the relationships between hydrogen production, induction time of sulfur deprivation, increase of chlorophyll after sulfur deprivation, and residual PS II activity, and (b) the effect of initial cell density upon sulfur deprivation. The maximum production volume of hydrogen was 151 ml $H_2$/l with 0.91 g/l of cell density in the late-exponential phase. We suggest that the effects of induction time and initial cell density at sulfur deprivation on hydrogen production, up to an optimal concentration, are due to an increase of chlorophyll under sulfur deprivation.

Neuroprotective Effect of Lilii bulbus, Nelumbins semen on the Sleep Deprivation-induced Oxidative Stress in the Hippocampus Dentate Gyrus (수면박탈로 유도한 Hippocampus Dentate gyrus의 산화 스트레스에 대한 백합, 연자육의 신경세포보호효과)

  • Choi, Mi Hye;Park, In Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • Sleep deprivation is an extremely common event in today's society. It has caused learning cognitive skill deterioration and poor concentration, increased disease such as heart disease, diabetes and obesity, sexual function decrease, infertility increase, depression and autonomic nervous system disorder. Sleep deprivation-induced stress caused NADPH oxidase and oxidative stress. And this oxidative stress induces apoptosis. Lilii bulbus and Nelumbins semen are known to mental and physical relaxation effects. In this study, we induced sleep deprivation(SD) in Sprague-Dawley rats in water for 5 days and thereafter administered orally L. bulbus and N. semen for 5 days. Brain tissues were observed by histochemical, immunohistochemical and tunel staining. The immunoreactives of Tumor necrosis factor ${\alpha}$, Neuronal nitric oxide synthases, Phospho-SAPK/JNK and gp91-phox of the L. bulbus administered group and N. semen administered group were weaker than those of sleep deprivation group. In the L. bulbus administered group and N. semen administered group, apoptosis was decreased than that of sleep deprivation group. Proapoptotic p53, Bax, Cleaved caspase 3 immunoreactives of the administered group were weaker than those of sleep deprivation group, whereas anti-apoptotic Bcl-2 immunoreactity was stronger in the L. bulbus administered group and N. semen administered group. Antioxidant mechanism such as DJ-1, superoxide dismutase 1, Nuclear factor-like 2 immunoreactives of the L. bulbus and N. semen administered group were stronger than those of sleep deprivation group. These results demonstrate that L. bulbus, N. semen had the neuroprotective effects on the sleep deprivation-induced oxidative stress in the hippocampus.