• Title/Summary/Keyword: Water Consumption

Search Result 295, Processing Time 0.104 seconds

A Study on the Determinants of Pro-Environmental Attitude and Water Consumption of Urban Households (도시 가구의 환경 친화적인 태도와 물 소비에 관한 연구)

  • 이경희
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.3
    • /
    • pp.93-111
    • /
    • 2003
  • This study aimed to examine the water consumption of urban households according to pro-environmental attitude for environmental protection. In contrast to preview studies, this study purposed to include various related independent variables, motive to environmental behavior, in special, in the model, and suggest informative data for research, education and strategies related to environmental protection. The data were from 665 housewives living in five urban areas. For the analysis of data, frequencies, means, percentages, GLM analysis, DMR test and Chi-square test were used. The main results of this study were as follows; 1. The respondents held high pro-environmental attitude that pro-environmental behaviors are important to protect environment. The pro-environmental attitude among the respondents were statistically different from the independent variables : spouse's occupation, living area, help of housekeeper, knowledge about environmental protection, convenience to check water consumption, and perception of voluntary conservative behavior among neighborhood 2. There were great difference on water consumption among respondents. The significant independent variables to have effects on water consumption were different between water consumption per person and higher/lower average water consumption. The relationships of pro-environmental attitude and motive to pro-environmental behavior with two water consumption as dependent variables were unique. Also, living areas and knowledge about environment protection were consistently important to explain the difference of water consumption.

A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine - (Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로))

  • Jo, Hyun-Jung;Kim, Woo-Ram;Park, Ji-Hyoung;Hwang, Young-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.

A Note on Approximation of Bottled Water Consumption Distribution: A Mixture Model (혼합모형을 이용한 생수소비 분포의 근사화에 대한 소고(小考))

  • Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.2
    • /
    • pp.321-333
    • /
    • 2002
  • Approximating bottled water consumption distribution is complicated by zero observations in the sample. To deal with the zero observations, a mixture model of bottled water consumption distributions is proposed and applied to allow a point mass at zero. The bottled water consumption distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household bottled water consumption survey data. The mixture model can easily capture the common bimodality feature of the bottled water consumption distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-consumption significantly varies with some variables.

  • PDF

A Study on the Amount of Supply Water Consumption by Entropy in APT (엔트로피에 의한 공동주택의 급수사용량에 관한 연구)

  • 안창환;공성훈;김종영
    • Journal of the Korean housing association
    • /
    • v.11 no.3
    • /
    • pp.125-136
    • /
    • 2000
  • The purpose of this study was to analyze water consumption in each apartment buildings influenced by several factors that are the income level of inhabitants, life style, the area apartments and climate. The automation of sanitary machines or facilities in recently built apartments has caused largely increases in amount of water consumption. Therefore, the design for water supply is very important for the maintenance of the optimum level or pressure of water supply. This study is based on the offer of basic data for improving the quality of water supply and employing the sanitary machines or sanitary facilities by analysis of amount increased of water consumption rapidly. Amount of water consumption data, the change in quality of entropy to the supply water pipe was analyzed and presented to indicate the necessary to basic materials for the design of an optimal water pipe.

  • PDF

A Study on the Water Consumption of the Spring Chinese Cabbage in Greenhouse (온실재배 봄배추의 소비수량에 대한 고찰)

  • 윤용철;이종창;서원명;이근후
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • /
    • pp.411-417
    • /
    • 1999
  • This study was performed to figure out an optimum water environment and to obtain the fundamental data related with saving labor and water consumption for the chinese cabbage being grown in greenhouse . The productivity of cabbage cultivated in boty pots and floor were compared to each other in the aspects of height and weight depending on the soil saturation levels. Obtained results are as follows. ; In case of pot cultivation , the height as well as weight of cabbage in 80% soil saturation level(P80) were measured to be larger than those in the other 2 soil saturation leves (P100 and P60). The weight of floor cultivated cabbages were relatively larger than that of pot cultivated ones. In accordance with saturation ration, the general trend of water consumption rate was maximum in P80 and was decreased in the order of P80 , P100 and P60. And the average indoor temperature as well as the plant growth rate were found to be closely related with water consumption rate.

  • PDF

Does Water Consumption Cause Economic Growth Vice-Versa, or Neither? Evidence from Korea (한국에서의 물소비와 경제성장 -오차수정모형을 이용하여-)

  • Lim, Hea-Jin;Yoo, Seung-Hoon;Kwak, Seung-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.869-880
    • /
    • 2004
  • The purpose of this study is to examine relationship between water consumption and economic growth in Korea, and to obtain policy implications of the results. To this end, we attempt to provide more careful consideration of the causality issues by applying rigorous techniques of Granger causality. Tests for unit roots, co-integration, and Granger causality based on an error-correction model are presented. The existence of bi-directional causality between water consumption and economic growth in Korea is detected. This finding has various implications for policy analysts and forecasters in Korea. Economic growth requires enormous water consumption, though there are many other factors contributing to economic growth, and water consumption is but one part of it. Thus, this study generates confidence in decisions to invest in the water supply infrastructure. Moreover, this study lends support to the argument that an increase in real income, ceteris paribus, gives rise to water consumption. Economic growth results in a higher proportion of national income spent on water supply services and stimulates further water consumption.

A Study about Regional Water Footprint of Rice Production in Agriculture Industry (쌀 농업에 대한 지역별 물 발자국 산정에 관한 연구)

  • Kim, Junbeum;Kang, Hun;Shin, Sang Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.827-834
    • /
    • 2013
  • The water footprint of product and service is the total volume of freshwater consumed, directly and indirectly, in the life cycle of a product and service. Up to date, water consumption data for industries and products were not well quantified and developed. Especially it is important to construct for agriculture industry which consumes lots of water. In this study, by using Cropwat 8.0 model, we tried to evaluate regionalized water consumption related with rice production in agriculture industry in eight regions (Gangwon, Gyeongi, Gyeongbuk, Gyeongnam, Jeonnam, Jeonbuk, Chungnam, Chungbuk). As a result, Gyeongbuk region has the lowest water consumption in rice production, which is $1,356.68m^3/ton$, on the other hand, Jeonnam region has the highest water consumption ($1,669.54m^3/ton$). By using the average indirect water consumption ($1,487.87m^3/ton$) of eight regions and direct water consumption, the total water footprint for the rice amount of rice bowl size (130 g), which is 193.6 L was calculated. Based on this research approach, we should develop water footprint database of all agriculture products and expand to other industrial sectors.

Estimation of the Virtual Water Consumption for Food Consumption and Calorie Supply (식품 소비 및 칼로리 공급 변화에 따른 가상수 소비량의 변화 분석)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.77-86
    • /
    • 2015
  • The agricultural water management generally has focused on water resources for crop production but it could be affected by the food consumption pattern. The aim of this study is to estimate virtual water consumption for food consumption and calorie supply using the water footprint and virtual water concept. In addition, we estimated the virtual water requirements for increasing the food and calorie self-sufficiency adjusted by the government for food security. About $330.0m^3/cap/yr$ of virtual water was consumed for the main foods consumption in 1985, and it was increased to $450.0m^3/cap/yr$ in 2010. The rate of virtual water consumption by meats consumption was 28 % in 1985 but it was increased to 54 % in 2010. In other words, the total virtual water consumption by foods consumption was increased from 1985 to 2010 with the high rate of meats consumption. The average $1.29m^3$ of virtual water was consumed for supplying 1 calorie per capita in 2010 but about $10.1m^3/cal$ of virtual water was consumed by only bovine meats consumption. The food self-sufficiency is the main factor for food security in Korea. About $46.5Mm^3$ and $393.9Mm^3$ of virtual water were required in order to increase the food and calorie self-sufficiency of wheat by 1 % individually. This study showed the water consumption was related to food consumption and calorie supply pattern, and these results could be used as the indices for the agricultural water management considering the change of eating habit and food security.

A Study on the Trend Analysis of Real-time Residential Water Consumption (주거용수 실시간 사용 추세패턴 분석)

  • Kim, Seong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3757-3763
    • /
    • 2012
  • This study ultimately aims at proposing an IT-based efficient method to solve one of the biggest problems currently faced by human beings which is lack of water. As a trial, targeting residential water, a chain of efforts was added such as choosing an appropriate field area and a censor, installing a sensor and the communication systems and servers, and monitoring the real time residential water consumption data. Then, a series of residential water consumption models was developed through the analyses of data gathered. And using the developed models, a series of trend analyses was performed for the residential water consumption. The research results shows that the developed models can be generalized and utilized for the water supply management purpose individually or along with the ones from the other water categories.

Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.381-386
    • /
    • 2019
  • Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.